Tropical Geometry.

From SIAG-AG

Revision as of 13:00, 1 December 2014 by Anders (Talk | contribs)
Jump to: navigation, search

Organizers: Maria Angelica Cueto (Columbia), Anders Jensen (Aarhus), Josephine Yu (Georgia Tech).

Tropical geometry is a piecewise-linear analogue of algebraic geometry. Advances in tropical geometry enable us to use tools from discrete geometry and combinatorics for computations in algebraic geometry and commutative algebra.  This minisymposium will feature recent progress in tropical curves, tropical algebra, combinatorics, and algorithms, with applications.

Speakers:

  • Timo de Wolff (Texas A&M) "Norms of Roots of Trinomials from the Viewpoint of Amoeba Theory"
  • Dustin Cartwright (U Tennesse Knoxville) title TBD
  • Jan Draisma (Eindhoven) "Metric graphs with prescribed gonality"
  • Simon Hampe (Saarbruecken) “Tropical convexity and tropical linear spaces”
  • Marie MacCaig (Birmingham) "Integer points in the image space of a matrix in max-linear algebra"
  • Diane Maclagan (Warwick) title TBD
  • Ralph Morrison (UC Berkeley) "Tropical Igusa Invariants"
  • Yue Ren (TU Kaiserslautern)
  • Yaroslav Shitov (Moscow) “Tropical bounds for extended formulations of polytopes”
  • Ngoc Tran (U Texas Austin) "Tropical geometry in economics"
  • Emmanuel Tsukerman (UC Berkeley) "Tropical Spectral Theory of Tensors"

To be confirmed:

  • Pascal Benchimol
Views
Personal tools