Applications of Polynomial System Solving in Cryptology
From SIAG-AG
The security of many cryptosystems is strongly related to the hardness of solving polynomial systems over finite fields. These systems often have specific algebraic properties, which may be leveraged by specialized methods. The goal of this minisymposium is to bring together experts in cryptology and in computational algebraic geometry to discuss the interaction of recent developments in polynomial system solving and related problems arising in cryptology.
Speakers:
- Jean-Charles Faugère (Jussieu, France)
- Tim Hodges (University of Cincinnati, USA)
- Sebastian Kochinke (University of Leipzig, Germany)
Index calculus on non-hyperelliptic curves and geometric considerations
- Koh-ichi Nagao (Kanto Gakuin University, Japan)
Equation systems coming from Weil descent and the elliptic curve discrete logarithm problem
- Pablo Parrilo (MIT, USA)
- Igor Semaev (University of Bergen, Norway)
New results in the linear cryptanalysis of DES
- Bo-Yin Yang (Academia Sinica, Taiwan)