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Code Generation

Code generation plays an important role in com-
putational science and engineering, and has been
used successfully in optimization to compute deriva-
tives from automatic differentiation. The present pa-
per describes a system for code generation that can
be used in dynamical parameter estimation prob-
lems. The python scripts require text input that
describe the model in a few hundred lines of code
which are transformed into several hundred thou-
sand of lines of C++ code that can then be used by
nonlinear optimizers such as IPOPT to optimally es-
timate parameters.

Python Scripting for Dynamical
Parameter Estimation in IPOPT

Bryan A. Toth
Department of Physics
Center for Theoretical Biological Physics

University of California, San Diego, La Jolla, CA
92093-0402, USA (btoth@physics.ucsd.edu).

1. Introduction

Dynamical state and parameter estimation (DSPE)
is an optimization technique where state and param-
eter estimation, observer theory, and synchroniza-
tion come together. [I, 11]. This method gives a
snapshot of the properties of a nonlinear dynamical
system using the minimum amount of data necessary
to differentiate the model. In addition to parameter
estimation, DSPE estimates the unmeasured state
variables of a system, using techniques from dynam-
ical control theory.

In order to implement this method, we use the
Python programming language to develop scripts
that generate CT files to set-up the problem in the
correct format for use with available optimization
software. These scripts read two text files which de-
fine the vector field of the dynamical system, as well
as the feasibility space of the optimization. Using a
time-series observation of one (or more) of the state
variables, the generated C™" code determines the
unmeasured parameters of the system, q, as well as
the unobserved state variables.

2. Problem Statement

2.1 General Approach

The general problem to be solved is to take a set of
first-order differential equations in the state vector



x(t) = [w1(t), x 1 (t)]:

d:vallt(t) G1(z1(t),x1 (t),q)
dx;t(t) = G(z1(t),x.(t),q).

These equations typically describe an experimen-
tal system for which only one of the state vari-
ables, x1(f) can be measured. From this mea-
surement, the unobserved state variables, x| (t),
and the unknown parameters q are to be deter-
mined. If L state variables can be observed, x(t) =
[x1(t),x2(t),. .., xL(t),x 1 (t)]

A typical solution to this type of problem is a
least-squares optimization of the error between the
measured data, x1(t) and a model y; (¢); this method
works well for linear systems, but breaks down for
nonlinear systems with positive conditional Lya-
punov exponents (CLEs)[3].

To resolve this problem, the experimental data is
coupled to a model system, y(¢) with parameters
p, as if for an optimal-tracking problem. This cou-
pling drives the model system to synchronize with
the data, and reduces the CLEs to non-positive val-
ues. The model functions, F, are chosen to give as
close a description as possible to the experimental
system; when the experimental system is known pre-
cisely, then F = G.

dycllt(t) — F1(y1(t),yl(t), p) + U(t)($1(t) —u (t))
dy;t(t) = F_ (n(t),yL(),p)

A term similar to that for y;(¢) is used for each
state variable that requires a coupling in order to re-
duce the CLEs to non-positive values. Again, least-
squares optimization could be used on the error be-
tween z1(t) and y; (f) over the time series of the mea-
sured data, but the addition of the coupling term,
u(t), complicates matters. This coupling must be
chosen large enough to cause synchronization of the
data to the model (and eliminate the positive CLEs),
but must not overwhelm the underlying dynamics of
the system. The addition of the coupling term into
the cost function for the optimization will ensure
that the coupling does not become too large, while
appropriate bounds for the range of the coupling en-
sure that it becomes large enough. Therefore, the
optimization to be performed is (DSPE):
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Minimize:
T
Cly,u,p) = % /0 {(fvl(t) - yl(t))2 + U(t)2}dt
Subject to:
dy;t(t) = Fi(n(t),yL(t),p) +ut)(z1(t) — 31(t))
DL ).y (0).p)

and also subject to suitable bounds for the state vari-
ables and parameters.

2.2 Example: Colpitts Oscillator

The Colpitts oscillator is a simple example system to
illustrate the implementation of the dynamical state
and parameter estimation method. The oscillator
has a fairly simple circuit, yet is chaotic over a wide
range of parameter values. Dynamical parameter es-
timation results have previously been reported with
this oscillator[3], which we briefly summarize.

The Colpitts oscillator can be described by the
following set of differential equations:

T1 = T9
t9 = —vy(x1+x3) — qx2
3 = n(xg+1—e ).

Here, v, q, and n are unknown parameters. The goal
is to determine these unknown parameters, as well
as yo and ys3 from a time series measurement of x1,
taken over some interval of interest. To differenti-
ate between this data system, and a model system
describing it, the data will continue to be described
by the x variable and the model system will be de-
scribed by y.

The first step is to transform the differential equa-
tions into a discrete time map over the interval of
interest [0, T]. The choice of numerical integration
technique for the differential equations is not unique;
we choose Simpson’s Rule, with functional midpoints
estimated by Hermitian cubic interpolation. This
choice gives accuracy of order §t*; methods with sim-
ilar accuracy will suffice just as well, but lower order
methods must be used carefully to ensure that the
data sampling rate, (%), is both accurate enough and
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fast enough to capture the underlying dynamics of
the system. These integrated equations become the
equality constraints in our optimization:

Simpson’s Integration:

yi(n + 1) = yi(n) + %[Fi(n) +4F(n2) + Fy(n + 1)]

Polynomial Interpolation:

3i(12) = Slui(n) + il + D] + S[F(n) = Fi(n+ 1)

For instance,

yi(n+1)
= y1(n) + g l2(n) + 49a(n2) + ya(n + 1]
y1(n2)

Sl +ya(n+ D] + 7]

5 y2(n) — ya(n + 1),

where the n2 index refers to the time midpoint be-
tween time n and time n + 1.

The next step is to couple the time series measure-
ment of x1(t) to its corresponding model variable,
y1(t). This is done in the differential equation by
the additional term, w(t)(x1(t) — y1(t)), so that the
discretized integration constraint at each time step
for y; is:

yi(n+1) =

+
=N

y1(n) y2(n) +u(n)(z1(n) — y1(n)) +

4<y2(n2) + u(n2)(m1(n2) -1 (n2))> +

ya(n + 1) +u(n+ 1)(x1(n—|— 1) —y1(n+ 1))}

S () + o+ 1)

y1(n2)

+<9%2(n) +u(n)(z1(n) — y1(n))

—yo(n+1) 4+ u(n+ 1)(3:1(n+ 1) —y(n+ 1))}

Similar equations are constructed for yo and ys,
so that a time series with T' data points gives 6T
constraint equations for the dynamics of the Colpitts
model. The unknown variables are each of the state

variables and the coupling at each time step (i.e.,
y1(n), y2(n), ys(n), u(n)), each state variable and
coupling at each mid-point time step, and the three
parameters (7, q, and 7). In total, there are 4(T+1)
+ 4T + 4 = 8T+8 unknown variables.

In discretized form, the cost function takes the
form of a sum, so the optimization problem is:

Minimize:

{ (0= )"+ uw?}

subject to the 6T constraints above, with appropri-
ate upper and lower bounds for the 8T+8 unknown
variables.

A variety of optimization software and algorithms
are available to solve this problem. SNOPT[6] and
IPOPTI[5] were chosen since these are both widely
available, are designed for nonlinear problems with
sparse Jacobian structure, and can handle large
problems. Depending on the problem and the data
set, a few thousand data points (or more) are neces-
sary to explore the state space of the model and allow
DSPE to produce accurate solutions. For problems
of the size of the Colpitts oscillator, this results in
tens of thousands of constraints and unknown vari-
ables, which can be cumbersome for some solvers.
Due to the discretized structure of the problem, how-
ever, the Jacobian of the constraints is sparse for
these problems, and both SNOPT and IPOPT can
take advantage of this sparsity.

T

1
- ﬁz
=0

C(y,u,p)

2.3 Colpitts Results

The purpose of DSPE is to find parameters and
states from experimental systems. In order to test
any method for this, a twin experiment is first per-
formed; instead of experimental data, twin data is
numerically generated for a known set of parame-
ters and initial conditions. Because the “unknown”
parameters are actually known in this scenario, the
twin experiment gives a clear indication of the via-
bility of the method for a given system. For the Col-
pitts oscillator, a twin experiment with 5000 data
points was run. The xi-variable “data” was coupled
into the experimental system, and the 3 unknown pa-
rameters, as well as the two unmeasured state vari-
ables were calculated exactly, as shown in Table 1
and Figures 1 and 2.



An important check is to ensure that the coupling
u(t) terms become small as a result of the optimiza-
tion. Since the synchronization term, wu(t)(x1(t) —
y1(t)), is not part of the real dynamical system,
this term should be minimized in the dynamics.
This is confirmed with the introduction of the ‘R-
value’, which measures the relative contributions of
the equation dynamics, Fi(y1(t),y.1(t),p), and the
synchronization term, w(t)(z1(t) — y1(¢)). Formally,
the R-value measure is defined as the ratio:

R-value =
,p))?
)(@1(t) —

[F1(y (t), yL(t)
t

[F1(y1(8), yL(8), P y1(0)]?

An R-value is calculated for each equation with a
synchronization term. An R-value of 1 at every time
point indicates that the optimization found a solu-
tion with minimal coupling, while an R-value which
varies significantly from 1 indicates that a suitable
optimization fit was not made between the data in
the model, which may be an indication that the
model incorrectly describes the experimental data.
For the Colpitts twin experiment, only one R-value
is necessary as only one state variable is coupled; in
this instance it was calculated to be 1.00 at all time
points as expected.

Parameter | Data | Result
0% 0.016 | 0.016
q 0.14 | 0.13999
n 1.26 | 1.2599

Table 1: Colpitts Model: Data Parameters and Es-
timated Parameters.

After the successful conclusion of the twin exper-
iment, experimental data from a chaotic Colpitts
electronic circuit is then used to estimate actual cir-
cuit parameters and states, as reported in [3].

This type of twin experiment has been successfully
implemented on a wide range of dynamical systems,
using nonlinear circuits as described here, spik-
ing neuron models (e.g., Morris-Lecar[9], Hogdkin-
Huxley[10]), and simple geophysical fluid flow mod-
els, showing the robustness of the dynamic parame-
ter estimation technique.[8]
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Figure 1: 3-D view of dynamical variable results for
the Colpitts oscillator dynamical parameter estima-
tion problem

3. Python Scripting

The basic structure of a dynamic parameter estima-
tion problem is similar for all vector fields - the Col-
pitts example above was one of the toy models used
as a proof of concept for the method. The main goal
of this method of parameter and state estimation is
to determine unmeasured parameters and states of
from real, physical systems.

Each new problem has a unique model associated
with it, so a new optimization instance must be con-
structed. For toy models such as the Colpitts os-
cillator, the vector field and Jacobian matrix can
be readily calculated and input by hand, but this
quickly becomes cumbersome for complex models of
real systems. To facilitate the use of the dynamical
parameter estimation method to a new problem, we
have used the Python programming language to de-
velop scripts that set up the problem in the correct
format for use with readily available optimization
software. These scripts take a simple text file formu-
lation of a parameter estimation vector field and out-
put correctly formatted and linked C* files for use
with the widely available IPOPT software libraries.
An extension of the scripts to use the SNOPT soft-
ware libraries is currently under development.

Python is a multi-purpose programming language
that permits both object-oriented programming and
structured programming. Python can be used as
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Figure 2: Dynamical variable results for the Colpitts
oscillator dynamical parameter estimation problem

a scripting language or a full-fledged programming
language, and running an IPOPT or SNOPT opti-
mization can be done with appropriate use of Python
modules that interact with CT and Fortran li-
braries. Python is a higher-level language than C™"
or Fortran; as a result program development is gener-
ally easier, but the execution speed is slower. For the
dynamic parameter estimation optimization prob-
lems, which currently can consist of tens of thou-
sands of variables and constraints, with the poten-
tial for many more, the program execution speed in
C** (native language of IPOPT) or Fortran (native
language of SNOPT) can be significantly faster than
in Python.

The Python scripts define a problem with two
distinct text files. The first text file, called ‘equa-
tions.txt’, defines the vector field of the model. The
number of equations, parameters, and controls are
specified, along with the variable names, model vec-
tor field and objective function. For the Colpitts
oscillator example, there are three dynamical vari-
ables which correspond with the three differential
equations of the model, three parameters to be deter-
mined, and one control variable. Once this text file
is fully defined, the Python module, ‘makecode.py’
sets up the C™ files necessary to run the optimiza-
tion. The ‘equations.txt’ file for the Colpitts oscilla-
tor dynamic parameter estimation problem is shown
in Figure 3.

A second text file, called ‘specs.txt’ includes prob-
lem parameters that the compiled CTF executable

program loads to run a particular instance of a prob-
‘specs.txt’ includes the size of the data file
(number of data points), sampling frequency of the
data, names of the data files needed by the ex-
ecutable, as well as the variable bounds and ini-
tial conditions (guess) for the optimization. The
‘specs.txt’ file for the Colpitts oscillator dynamic pa-
rameter estimation problem is shown in Figure 4.

lem.

Data file for discretize.py

Discretize.py skips over any line that begin with #
Proper format is:

First line is problem name

Second line is number of equations, number of parameters,
number of controls, number of external stimuli
Following lines list the equations

With the cost function last

Then the variable names (in same order as equations)
Parameter names used in equations

Control names used in equations

Data names used in equations

Problem Name

Colpitts

# nY,nP,nU,nI

3,3,1,0

# equations

yy+k1* (Data-xx)

-gam* (xx+2z) -qq*yy

etax(yy+1l-exp(-xx))

# Objective/Cost function
(Data-xx)*(Data-xx)+k1xkl

# variable names

XX

yy

zz

# parameter names

gam

Qq

eta

# control names

k1

# data names

Data

# stimuli names

H OH HHHEHHHEHHHEHHR

Figure 3: Sample equations.txt file for the Colpitts
oscillator dynamical parameter estimation problem

3.1 Discretize.py

The module ‘makecode.py’ consists of several sep-
arate Python scripts, that run sequentially. One
of the strengths of the Python language relative to
Ot and Fortran is the ease of string manipulations.
The module that uses this string functionality to
set up the optimization problem is ‘discretize.py’.
‘discretize.py’ uses the SymPy package, a Python li-
brary for symbolic mathematics[7] for this purpose.



# Data file for makecode.py

# Includes the problem length

100

# How much data to skip

# from beginning of data file

1000

# Time step - twice the time step of the data,
# since the data includes time and midpoints.
0.2

# File name - input

colscalelx.dat

# Data File name - stimuli

# No stimuli for this problem

# Boundary & initial conditions

# 0 for no initial data file, 1 for data file
# A data file must include values for all state
# variables at each time point.

0

# If above is 1, list name of data file next.
# If 0, no entry needed.

# State Variables:

# These are in the formats:

# lower bound, upper bound, initial guess

# Boundary & initial conditions

# x

-100, 100, 0.0

#y

-100, 100, 10

# z

-100, 100, O

# k

0, 100, O

# dk

# derivative of the control parameter

-1, 1, 0

# pl

0, 100, 5

# p2

0, 100, 10

# p3

0, 100, 20

Figure 4: Sample specs.txt file for the Colpitts os-
cillator dynamical parameter estimation problem

The state variable, parameter, and control names,
as well as the vector field and objective function for
the problem are imported from ‘equations.txt’ and
converted into symbolic equations for use in SymPy.
These symbolic equations are then transformed into
a discretized integration according to Simpson’s Rule
with polynomial interpolation described above.
This discretized form of the vector field is then
used to symbolically calculate the Jacobian and Hes-
sian matrices, using SymPy to take first and second
derivatives of the vector field with respect to all the
state variables, parameters, and controls. For the
Simpson’s Rule discretization choice, care is taken
to keep track of whether state variable and control
derivatives are taken with respect to the variable at
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the current time, next time, or mid-point time, to
ensure proper placement within the Jacobian and
Hessian structures. The result is symbolic arrays
for the vector field, Jacobian, and Hessian, that in-
clude only non-zero entries only, since these matrix
elements will be entered into the optimization in a
standard sparse matrix formulation that only needs
the row, column, and value information for non-zero
entries. Five separate arrays from ‘discretize.py’ are
needed in the IPOPT optimization:

e Objective function

e Constraints

Gradient of the Objective Function

Jacobian of the Constraints

Hessian of the Objective Function and Con-
straints

The symbolic strings in these arrays are converted
into proper C™* format (e.g., ** changed to pow
function) and stored for the next part of the process,
‘makecode.py’ itself.

3.2 Makecode.py

A typical C*+ IPOPT optimization program con-
sists of a main program that initiates a new problem
class and calls the optimization process. The prob-
lem class is typically defined in another file, with an
appropriate header file. For our purposes, the main
program is standard across different vector fields;
the details of the vector fields are contained within
the other files, which we call problemname_nlp.cpp
and subsequent header file, problemname nlp.hpp.
The module ‘makecode.py’ takes the information
outputted from ‘discretize.py’ and writes these CTF
files for a particular problem. The executable C*T+
program, once compiled, loads the information in
specs.txt in order to run the program. In this way, a
given vector field can be sampled over various data
sets of differing lengths, without re-compilation of
the program.

An example of one of the routines that ‘make-
code.py’ generates is the ‘Eval-g’ function, which re-
turns the value of the constraints. These constraints
have been stored in an array in symbolic discretized
form by ‘discretize.py’. The code generation for this
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function consists of setting up a loop over all time
points, so that each discretized constraint is defined
at each time point. Each symbolic variable from ‘dis-
cretize.py’ is equated to the proper term of a CTT
array that contains all optimization variables. The
‘Eval-g’ function for the Colpitts oscillator problem
defined by the Figure 3 ‘equations.txt’ file is shown
as Figure 5. This function is rather straightforward;
for the three dynamical variable oscillator, 42 lines of
O™ code is generated to define these as constraints.
The functions that define the Jacobian and Hessian
of the vector field are significantly more complicated,
since both functions require detailed row and column
information that defines the constraint and partial
derivative that is being taken. The total length of
generated CTT code for each function for the Col-
pitts oscillator is shown in Table

7
Model Type Vars Cons equations.txt CcTF lines
Colpitts Osc 10T+8 7T 37 lines 996
Lorenz Atm 18T+10 12T 39 lines 1394
HH Neur 12T+428 9T 57 lines 2171
lobster Neur 44'T+86 35T 145 lines 6258
Arakawa Ocean 384T+195 192T 283 lines 218034

Routine Description Lines
Eval _f Evaluate Objective 68
Eval_grad_f | Evaluate Objective Gradient 70
Eval g Evaluate Constraints 42
Eval_jac_g Evaluate Jacobian 218
Eval_h Evaluate Hessian 209

Table 2: Length of generated code for various sub-
routines in Colpitts example.

Several other Python modules are used to produce
the necessary CTT code, as well as a basic Makefile
to link the files together at compilation. The gen-
eral structure of these files is similar across different
problems, with the main difference being the vec-
tor field, Jacobian matrix, and Hessian matrix. For
large problems, defined in terms of the number of
dynamical variables (or number of equations), the
generated C*1 code can be very large, as shown in
Table 3l

4. Discussion

Dynamical parameter estimation has applications in
a wide range of fields, and these Python scripts have
made the implementation for a new model to be
straightforward. The version discussed here uses
Simpson’s integration rule and the IPOPT solver,
but these can be easily substituted. For instance,
the integration rule is defined in just a few lines of

Table 3: Length of generated code for various dy-
namical parameter estimation problems. The listed
problems are the Colpitts oscillator discussed herein,
the Lorenz atmospheric model[I2], the Hodgkin-
Huxley neuron model[I0], the lobster lateral pyloric
neuron model[I4], and the barotropic vorticity ocean
circulation model[I3]

the discretize.py code, and can be changed out to an-
other rule fairly simply. Use of another optimization
solver is slightly more complex since program syntax
varies across solvers, but the general front-end algo-
rithms are similar among optimization software that
makes use of the standard sparse matrix formulation
that only needs the row, column, and value informa-
tion for non-zero entries.

More importantly, no language-specific program-
ming knowledge is necessary in order to use these
scripts for dynamical parameter estimation. The
scripts are written in Python, but are run from the a
terminal command line, so no Python-specific knowl-
edge is needed. Optimization software packages typ-
ically include interfaces to allow the use of a user’s
language of choice, but these interfaces may not be
as well-supported as the base software, may be inef-
ficient to use, and may significantly slow down the
computational time to solve a given problem. By
writing code in the native language of the optimiza-
tion software, these Python scripts require only basic
command line skills to solve complicated dynamical
parameter estimation problems.

Python is the natural programming language to
implement this type of program due to its string han-
dling ability. Higher level programs such as MAT-
LAB and Mathematica are capable of implementing
the symbolic differentiation performed by SymPy,
and many programming languages can be set to
write text to a file (which is what the Python scripts
ultimately do). Many programming languages strug-
gle to seamlessly import information from a text
file, and this is where Python excels. These Python
scripts would not be necessary if only a single op-
timization instance needed to be performed on a
unique model vector field. The ability to radically



change the system being studied by editing just two
text files opens the door for dynamical parameter
estimation to be easily implemented across many
fields.
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bool COLPITTS_NLP::eval_g(Index n, const Number* x,

bool new_x, Index m, Number* g)

{
assert(n == 10*Time+8);
assert(m == 7*xTime);

for(Index jt=0;jt<Time;jt++) {

}

for(Index i=0;i<nY;i++) {
Xvall[i] = x[jt + i*(Time+1)];
Xvalpl[i] = x[jt + i*(Time+1) + 1];
Xval2[i] = x[(Time+1)*(nY+2*nU) + jt + i*(Time)];

} //end for loop

for(Index i=0;i<nU;i++) {
Kiival[i]l = x[jt + nY*(Time+1) + 2%i*(Time+1)];
Kiivalpi[i] = x[jt + nY*(Time+1) + 2%i*(Time+1) + 1];
K11val2[i] = x[(Time+1)*(nY+2*nU)+(nY+2*i)*Time+jt];
dK1ilval[i] = x[jt + (Y+2%i+1)*(Time+1)];
dKiivalpi[i] = x[jt + (nY+2*i+1)*(Time+1)+1];
dK11val2[i] = x[(Time+1)*(nY+2*nU)+(nY+2*i+1)*Time+jt];

} //end for loop

Xdval[0] = Datal[2*jt];
Xdval2[0] = Data[2x*jt+1];
Xdvalp1[0] = Datal[2xjt+2];

for(Index i=0;i<nP;i++) {
Pval[i]l = x[(2*Time+1)*(nY+2*nU)+i];
} //end for loop

gl7*jt+0] = Xval[0] + 0.167xhstep*(Xval[1] +
K11val[0]*(Xdval[0] - Xval[0])) - Xvalpi[0] +
0.167*hstep*(Xvalp1[1] + Kilvalpl[0]*
(Xdvalp1[0] - Xvalpi[0])) + 0.667*hstep*
(Xval2[1] + K11val2[0]*(Xdval2[0] - Xval2[01));

gl7xjt+1] = Xval[1] + 0.167+*hstep*(-Pval[0]*

(Xval[0] + Xval[2]) - Pval[il*Xval[1l) -
Xvalp1[1] + 0.167*hstep*(-Pval[0]*

(Xvalp1[0] + Xvalpi[2]) - Pval[1l*Xvalpi[1]) +
0.667*hstep*(-Pval[0]*(Xval2[0] + Xval2[2]) -
Pval[1]*Xval2[1]);

gl7*jt+2] = Xval[2] + 0.167*Pval[2]*hstep*(1 +
Xval[1] - exp(-Xval[0])) + -Xvalpi[2] +
0.167+Pval[2] *hstep*(1 + Xvalp1[1] -
exp(-Xvalp1[0])) + 0.667xPval[2]*hstep*

(1 + Xval2[1] - exp(-Xval2[01));
gl7*jt+3] = 0.5%Xval[0] + 0.125*hstep*(Xvall[1] +
K1ival[0]*(Xdval[0] - Xval[0])) + 0.5*Xvalp1[0] -
0.125*hstep*(Xvalpl[1] + Kilvalpl[0]*
(Xdvalp1[0] - Xvalp1[0])) + -Xval2[0];
gl7xjt+4] = 0.5%Xval[1] + 0.126%hstep*(-Pval[0]*
(Xval[0] + Xval[2]) - Pval[1l*Xvall[1]) +
0.5%Xvalp1[1] - 0.125%hstep*(-Pval[0]*
(Xvalp1[0] + Xvalpi[2]) -
Pval[1]*Xvalp1[1]) -Xval2[1];

gl7*jt+5] = 0.5%Xval[2] + 0.125%Pval[2]*hstep*

(1 + Xval[1] - exp(-Xvall[0])) +
0.5*Xvalp1[2] - 0.125%Pval[2]*hstep*
(1 + Xvalp1l[1] - exp(-Xvalp1[0])) -Xval2[2];

gl7xjt+6] = 0.5%xK11val[0] + 0.125*dK1ival[0]*hstep +

0.5%K11valp1[0] - 0.125*%dK11lvalpl[0]*hstep
-K11val2[0];

//end for loop

return true;

}

Figure 5: Sample eval_g C™" routine for the Col-
pitts example
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IFIP TC7 Conference

Call for Papers
25th IFIP TC7 Conference on
System Modeling and Optimization
September 12-16, 2011, Berlin, Germany
http://wuw.ifip2011.de

Conference Topics:

optimization theory

linear and nonlinear programming

stability and sensitivity analysis

stochastic optimization

combinatorial and discrete optimization
large-scale optimization

optimal control governed by ODEs and PDEs
industrial applications of optimization

modeling and optimization in information pro-
cessing

Important Deadlines and Information. The
deadline for submission of minisymposium proposals
is September 1, 2010, the deadline for submission of
contributed talks/posters is November 1, 2010. For
more information about this conference contact the
website http://www.ifip2011.de

Deadlines for STAM OP11

Submission & Conference Deadlines.

e October 18, 2010: Minisymposium proposals

e November 15, 2010: Abstracts for contributed
and minisymposium speakers

e April 4, 2011: Pre-Registration

Travel Fund. SIAM provides travel support for
students, postdocs, and early-career scientist. The
deadline for applications is November 1, 2010.
Nominations for SIAG/OPT Prize: Novem-
ber 15, 2010.

SIAG/OPT Views-and-News

Call for Manuscripts for the MPS-
SIAM Series on Optimization

The joint MPS-SIAM book series seeks high-quality
texts from all areas of optimization. We welcome
research monographs on cutting-edge topics, books
on applications, textbooks at all levels, and tutorials.
Rigorous selection guarantees that all books meet
the highest quality standards, making this a flagship
collection in the field.

The series offers many benefits to its authors and
customers:

e Books can be marketed to over 100,000 peo-
ple via membership and other pertinent mailing
lists.

e All books remain in print until they are replaced
by an updated edition.

e Royalties are competitive with those of other
publishers.

e All books are fully copy edited by experienced
staff.

e MPS and SIAM members enjoy a 30% discount
off list price, and nonmembers get a 20% dis-
count at conference exhibits.

e Instructors using series books for their courses
can get a 20% discount for their students.

e Due to a distribution partnership, customers
outside North America can order books through
Cambridge University Press using their local
currency.

e Publishing with the series supports STAM’s mis-
sion to promote, advance, and provide programs
and media for the applied mathematics and
computational science communities.

If you have a book topic suggestion or are writing
a book yourself, please contact series editor-in-chief
Tom Liebling (thomas.liebling@epfl.ch) or series ac-
quisitions editor Sara Murphy (murphy@siam.org)
for more information.

A list of books in the series can be found at
http://www.siam.org/catalog/mp.php.
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Chairman’s Column

Comments from the Editor

Organization for the 10th SIAM Conference on Op-
timization is going ahead full steam — that’s to both
the program committee and the local organizers for
their hard work on our behalf. I hope that you are all
working on minisymposia submissions — the dead-
line for this and other things associated with next
May’s conference are given in the bulletin section
above.

I’d like to thank Erling Andersen, Kurt Anstre-
icher, Martine Labbe, Ariela Sofer and Luis Vicente
for serving on the “Officer Nominating Commit-
tee” to replace our current officers for the next 3
year cycle. The excellent slate of candidates they
have produced can be found on our wiki at: http:
//wiki.siam.org/siag-op along with other infor-
mation regarding the activities of the STAG. Please
make sure you cast your votes for your favored can-
didates when the announcement is made via email.

There continues to be a growing collection of blogs
and information regarding optimization, its theory,
algorithms and applications that becoming available
online. I would welcome suggestions (to my email)
on how the SIAG can become more a part of this,
and to help move this old fogie into the 21st century.
Maybe someone can write a summary article on this
for the next Views-and-News, and show us how to
reach the next generation of researchers and students
in our disciplines. Or simply help us keep informed
and aware of all the information that we could use...

Michael C. Ferris, SIAG/OPT Chair
Computer Sciences Department
University of Wisconsin-Madison

1210 West Dayton Street,

Madison, WI 53706

USA

ferris@cs.wisc.edu
http://pages.cs.wisc.edu/~ferris/

Response to Michael’s Challenge. At the last
SIAM annual meeting in Pittsburgh, STAM exper-
After a shy start-up pe-
riod, the participants generated some lively tweets,
including the first-ever “tweetable” talk by David
Gleich (Stanford). You can relive those fun days
by scrolling through the tweets at http://twitter.
com/SIAMconnect . Maybe SIAG/OPT can get it’s
own list, or tweet during OP11!

imented with twitter.

New Submissions for Views. Views-and-News
always needs new papers. Please consider submit-
ting a short paper (maybe summarizing a paper that
you submitted to another journal), or suggest a topic
for the next issue. There are two advantages to
publishing in Views-and-News: papers are reviewed
lightning fast, and longer versions can later be pub-
lished in regular journals.

Sven Leyffer, Editor

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, 1L 60439, USA
leyffer@mcs.anl.gov
http://www.mcs.anl.gov/~leyffer/
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