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Supercomputers have reached sustained petaflop performance
a few years ago, and machines capable of exascale computing are
predicted to arrive around 2020. These machines will provide
massive concurrency on an unprecedented scale. While the exact
architecture of such machines is still uncertain, they likely will
feature on the order of 109 parallel threads in some way or other.
Our current optimization algorithms are by and large ill-suited
to take advantage of this degree of concurrency. Consequently
high-performance computing has not made as big an impact on
optimization as in other areas of applied mathematics. Here we
review why this is the case and what must be done in order to
change this state of affairs.

1 Introduction

State-of-the-art supercomputers are now reaching a perfor-
mance of tens of petaflops, and it is predicted that machines
capable of exaflop performance will be with us by about 2020.
On the other hand there is a fear that few, if any, of current
supercomputer applications across all areas are actually ca-
pable of exploiting such a computing resource efficiently. The
major bottleneck lies in the software, rather than the hard-
ware, although some hardware restrictions (such as lack of
both fast communication and fast memory access) are adding
to the difficulty.

As a response to the identified gap between hardware and
software capabilities, various efforts such as the International
Exascale Software Project (IESP [4]) and its European coun-
terpart, the European Exascale Software Initiative (EESI [3])
were set up in 2009/2010 with a view to qualitatively assess
the gap in software capabilities, identify promising routes to
achieve exascale performance, and quantify the amount of re-
sources (mainly in manpower for coding and research) needed
to close the gap in time for the arrival of the first exascale
machines. A more recent effort is the Exascale Mathematics
Working Group charged with a similar remit in 2013 [2].

The author has been vice-chair of the working group on
“numerical libraries, solvers and algorithms” as part of EESI
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Figure 1: Performance of top500 list computers (Image gener-
ated by http://www.top500.org on 11/11/15).

and chair of the same working group in the follow-up EESI-2
over the past five years. This report presents the findings of
the working group regarding the barriers to exaflop (and even
petaflop) scalability for optimization algorithms and outlines
possible future avenues to overcome these barriers.

2 Background and Setting

The reasons for exascale (and by implication massively par-
allel) computing are simple: Applications (that are deemed
critical), such as seismic simulations, engineering (e.g., air-
craft design), health, and military, always will require in-
creasingly powerful computing resources. While Moore’s law
has reached its end in terms of pure processor speed, in terms
of whole system performance we are still seeing an exponen-
tial increase (over the past 20 years a doubling of the Rmax of
the fastest system on the top500 list about every 15 months;
see Figure 1). This increase is achieved almost solely by an
increase in the number of concurrent threads. A machine
with exascale performance (Rmax ≈ 1018 flops) is expected
to arrive around 2020 and is predicted to have around 109

parallel processes. Even optimistic estimates put the power
consumption of such a machine at not less than 20 MW. That
would translate into an annual electricity bill of $20 million.
Clearly this machine is not a toy: it is designed to do real
science in areas where exascale computing is likely to have
the most impact.

EESI had been tasked to report on the current state of the
art in applications of supercomputing and to identify gaps
in the relevant areas that prevent achieving exascale perfor-
mance by 2020. Internally the EESI remit has been split
into several work packages of which the most relevant from
an optimizer’s point of view are WP3: Application Grand
Challenges and WP4: Enabling Technologies. WP3 has iden-
tified applications for which (from an socio-economic view-
point) achieving exascale performance is most critical. They

encompass a wide range of areas such as industrial and en-
gineering applications, weather, climatology, earth sciences,
fundamental sciences (chemistry, physics), life science, and
health. WP4, on the other hand, is concerned with all levels
of the software stack used by codes in these applications.
It is subdivided into “hardware,” “software eco-systems,”
“numerical libraries, solvers and algorithms,” and “scientific
software engineering.” Obviously a strong interaction exists
between these work packages: in particular, the applications
should set the priorities for the enabling technologies.

The relevant aspect for an optimization audience is the
work of the working group on “numerical libraries”, which
includes optimization in its remit. This working group has
been made up of 15 experts, who cover all areas of numer-
ical algorithms deemed critical—in particular, dense linear
algebra, graph and hypergraph partitioning, sparse direct
methods, iterative methods for sparse matrices, eigenvalue
problems, model reduction, optimization, control of complex
systems, and structured and unstructured grids.

It is notable, that few, if any, exascale-critical applications
actually make use of optimization. The closest are proba-
bly inverse problems, where a simple parameter optimization
(conjugate gradients or even gradient descent) is used over a
complex, whole-machine simulation to optimize a (smallish)
parameter set. Why this lack of use of optimization? The
author can think of the following answers: First, the critical
applications are to some extent self-selected. These are ap-
plications for which exascale computing is expected to make
the most impact. Of course that means these applications
are deemed important for socioeconomic reasons, but it also
means that these are applications that have been shown to
scale well on previous generations of supercomputers. Sec-
ond, optimization algorithms generally don’t scale well, at
least not when compared with other algorithms in applied
mathematics such as simulations or domain decomposition
for PDEs. Our fundamental algorithms, such as the simplex
method, are inherently serial; and even in problem classes
that are prime candidates for parallelism, such as stochastic
programming, a relatively tight interaction exists between
different parts of the problem. Optimization simply doesn’t
scale enough for “cover-story” applications, and that’s what
we are talking about at the moment.

That is not, however, a reason to stop thinking about exas-
cale. Optimization may not be at the forefront of algorithms
that are heavily used in the first applications to run on ex-
ascale machines. But exascale machines will be here to stay.
Today’s flagship systems will be commodity hardware in 20–
30 years. By that point, and likely much earlier, optimization
algorithms will have to scale to exascale level.

3 Exascale Challenges

An exascale machine will pose some unique challenges in
terms of programmability and scalability of algorithms. The
massive task concurrency alone will pose a major challenge.
While pure computing power is still increasing, memory
availability and speed will lag behind. We are therefore look-
ing at a significant decrease in available memory per node
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and memory latency relative to calculation speed. The large
power requirements make it important that whole-machine
calculations be as efficient as possible. Even so, the power
consumption target of 20 MW is extremely ambitious and
will be achievable only through restrictions on the amount
of memory accesses and data movements. Moreover, with
increasing numbers of sockets on the system, hardware fail-
ures become more frequent (mean time to failure anywhere in
the system significantly below 1 day), resulting in frequent
need for checkpointing and restarting of some nodes, thus
impacting load balancing.

3.1 Are we ready?

The immediate answer must be “no”! It is hard to see how
any of the current optimization algorithms could scale to
109 parallel threads. On the other hand, in order to achieve
application exascale performance, optimization is likely not
going to be used on its own on the full machine. Often, good
scalability of the underlying linear algebra will be inherited
by the optimization routine, and algorithms that can use
such scalable routines will be at an advantage.

More likely, an optimization algorithm will be a (small)
part somewhere in a large hierarchy of algorithms with op-
timization used at the top level (optimizing a parameter set
over a whole-machine simulation), at the bottom level (a rel-
atively small optimization problem solved many times with
slightly different parameters, probably concurrently, e.g., for
ensemble runs), or somewhere in between. Therefore mak-
ing algorithms fit for exascale performance means not only
designing algorithms that scale to 109 threads but also re-
ducing the flops/memory ratio and improving efficiency for
many simultaneous runs (preferably without much commu-
nication). Keeping these points in mind, what is the current
state of affairs regarding exascale readiness?

Linear programming is arguably the most important
class of optimization problems. It is important both in its
own right and as a subproblem in integer programming or
nonlinear programming. Of the two competing algorithm
classes, the simplex algorithm is notoriously difficult to paral-
lelise, because of its inherently serial task dependency graph.
Some progress can be made by exploiting parallelism in the
linear algebra for special problem classes [7]. Interior point
methods (IPMs) fare much better in this respect but are in-
efficient when used as subproblem solvers because of their
ineffective warmstarts. Also, at least when using direct fac-
torizations, IPMs with direct factorizations are memory hun-
gry, which will become more of a problem. Dramatic break-
throughs are not likely for either of these limitations, al-
though iterative solvers for IPM are starting to mature and
will improve their memory requirements. To be able to solve
a series of very large LP problems efficiently on a massively
parallel hardware, we will likely need to look to new (hy-
brid?) algorithms.

Integer programming seems an obvious candidate for
exascale computing. Often, realistic problems take too long
to solve or need too much memory, so throwing vast com-
puting resources at them is appealing. Will it work? Koch

et al. [5] point out that a (M)IP can be intractable for many
reasons. Problems with inherently weak formulations may
well result in search trees so large that their complete pro-
cessing defeats all reasonable computing resources. Problems
with large node problems and relatively small search trees
are relying on the availability of warmstartable and paral-
lelisable LP solvers (see above). Problems with huge search
trees have more potential, but here are also problems with
ramping (having not enough nodes early on), load balanc-
ing (transferring nodes to other processors dynamically is
expensive), and the possible increase in the total number of
nodes on the tree if processed in parallel because of delayed
propagation of bounds. These issues need to be addressed.

Decomposition is an appealing strategy for certain
classes of problems (notably, stochastic programming) and
one that usually leads to scalable algorithms. However, the
need to coordinate subproblems results in synchronization
points that, in view of less-than-perfect load balancing (as
is inevitable for more than a few hundred parallel tasks),
hinders scalability.

In summary the main issues that prevent scalability of cur-
rent algorithms to the required level for exascale are synchro-
nization points, essentially linear task-dependency graphs
and algorithms that are already memory-bound.

3.2 Strategies for exascale performance

So what can be done? A few general strategies are promising
and in some cases are successfully used in other areas of
applied mathematics:

Synchronization avoidance: Almost all our current op-
timization algorithms that do parallelise well do so by decom-
position, and that almost invariably means synchronization
when the master problem is solved. For a thousand con-
current tasks one may just hope that subproblems take an
equal amount of time in order to achieve good load balanc-
ing. For machines with many more processors scalability is
clearly bounded. Further, decomposition algorithms that re-
quire the solution of (M)ILP problems such as branch and
price already have to deal with subproblem solves that can
take vastly different amounts of time. In short, scalable de-
composition algorithms clearly cannot impose barriers in the
form of synchronization points. Some work has been done
on asynchronous decomposition (e.g., Benders decomposi-
tion applied to stochastic linear programming [6]). However,
much work remains to be done. One possible approach would
be a totally asynchronous algorithm where each processor is
responsible for one subproblem that it solves continuously,
always taking the latest available data from other proces-
sors as input and always sending out the latest results asyn-
chronously to the other processors to be used if and when
they see fit. Such an algorithm may work with or without a
coordinating master problem (which again would have to do
its work without synchronising with other processors). Care
would have to be taken to ensure convergence and stability of
such an algorithm. A series of papers by Bertsekas [1] from
the early 1990s gives a starting point for possible convergence
analysis of such totally asynchronous algorithms.
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Avoidance of memory accesses: Already on current
machines memory fetches (especially uncached ones) can be
orders of magnitude slower than computations. This situ-
ation is going to be even more pronounced on future ma-
chines. In addition, memory fetches are usually power hun-
gry, and machines are likely to operate on some restricted
power budget (energy-aware algorithms). Consequently, al-
gorithms should aim for a much higher flops per byte ratio.
Investigation of higher-order algorithms seems to be an ob-
vious candidate.

Latency/communication hiding: Where memory ac-
cesses cannot be avoided, the next best strategy is to try to
do useful work on data already available while waiting for
the next set of data to arrive. Where data is required from
other processors, nonblocking MPI communications can be
used. Where data is required from RAM, however, much less
support is available for coding such a strategy.

Blocking and hierarchical algorithms: In order to
achieve a high flops per byte ratio and to avoid memory
fetches, a good strategy is to partition the problem at hand
into (data) blocks that can be worked on in situ. This is
akin to the strategy that makes the use of BLAS level 3
routines so efficient. Extending this strategy will lead to
hierarchical algorithms. We note, however, that use of this
strategy usually requires (possibly expensive) restructuring
or repartitioning of the problem data.

3.3 Beyond scalability: reliability, reproducibil-
ity, floating-point issues

Exascale challenges go beyond just achieving scalability of
algorithms. In order to make maximal use of the scarce
resources on such a system, some wider issues need to be
addressed.

The tradeoff between solution accuracy and usage of scarce
system resources (computation time, memory) is going to
become more critical. Mixed-precision floating-point arith-
metic will be relevant. Calculations in single precision are
appealing since they reduce power- and cycle-hungry mem-
ory accesses. On the other hand, a whole-machine operation
on 109 processors may well require quad precision to prevent
the result from being flooded with floating-point errors. We
will need to consider at every part of the calculations what
precision is necessary. Too much will hurt performance; too
little will hurt accuracy.

The use of asynchronous algorithms will introduce repro-
ducibility into the equation. Reproducibility will be costly to
achieve (if not impossible) for asynchronous algorithms. So,
how important is it really that results are reproducible? A
better paradigm might be that the optimization solver guar-
antees to always find a solution within the specified back-
ward error bounds of the optimal solution (and does so re-
producibly). What error bounds are acceptable for a given
usage/application would need careful assessment.

On a machine with 109 processors some part inevitably will
fail or even produce wrong results almost hourly. Obvious
strategies to mitigate this situation are frequent node-by-
node checkpointing and redundant calculations. Intuitively,

we feel that we can do better: many optimization algorithms
(by being iterative) are robust enough to be able to cope with
some errors or even partially missing results. Asynchronic-
ity again would prevent delaying the whole application by
downtime on a single compute node.

3.4 Training and software maintenance

Ultimately the aim (at least of efforts like IESP and EESI)
are not (just) scalable algorithms but reliable and robust li-
braries that can and will be used by anyone who needs them.
A mechanism is needed by which long-term funding for the
development and maintenance of state-of-the-art scalable op-
timization libraries can be obtained. These libraries will be
complex, so training opportunities for their users will also
be needed. Clearly, in order for people to put in the effort
to learn how to use such (likely complex) software packages,
they must be confident that the packages will be actively
supported for a reasonably long time.

Currently it is difficult (at least in Europe) to secure fund-
ing for the provision of robust, well-documented and user-
friendly libraries.

4 The Future

Both IESP and EESI/EESI-2 have now finished. Follow-up
projects to monitor the progress toward exascale readiness
are under way (in the form of the workshop series on Big
Data and Extreme Scale Computing, “BDEC”) or in the ap-
plication stages (in the form of the European eXtreme Data
and Computing Initiative, “EXDCI”). The European Com-
missions Horizon 2020 program has included a call “Towards
Exascale High Performance Computing” originating directly
from the EESI recommendations. More funding calls are
expected.

Currently Europe seems committed to the path to exas-
cale readiness and many opportunities are available to be
exploited.
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1 Introduction
During the past few years several new results on pack-
ing problems were obtained by using a blend of tools from
semidefinite optimization, polynomial optimization, and har-
monic analysis. Schrijver [19] used semidefinite optimization
and the Terwilliger algebra to obtain new upper bounds for
binary codes, Bachoc and Vallentin [2] used semidefinite op-
timization and spherical harmonics for spherical codes, and
Cohn and Elkies [5] used linear optimization and Fourier
analysis for sphere packings leading to the breakthrough re-
sult of Cohn and Kumar [6], who proved that the Leech
lattice in dimension 24 gives the best lattice sphere packing
in its dimension. De Laat, Oliveira, and Vallentin [13] gen-
eralized the approach of Cohn and Elkies to provide upper
bounds for maximal densities of packings of spheres having
different radii. The most recent extension was by Oliveira
and Vallentin [17], providing new upper bounds for the den-
sity of packings of congruent copies of a given convex body.

Typical in all this work is the use of semidefinite opti-
mization and harmonic analysis, which gives newcomers to
the field—often overwhelmed with technical details—a hard
time. Also typical is that the computational challenge grows
dramatically if one goes from compact spaces, like binary
Hamming space or the sphere, to noncompact spaces like
the Euclidean space.

Our goal in this paper is to provide an introduction to
this topic in an attempt to paint the big picture without
losing essential detail. This paper is, however, not meant as
a survey of results about geometric packing problems—that
task would easily fill books! For a first orientation we refer
the interested reader to the classical book by Conway and
Sloane [7].

2 Some History
The sphere packing problem asks, How much of three-
dimensional space can be filled with pairwise nonoverlapping

translates of unit spheres? This was considered by Johannes
Kepler (1571–1630) in his work Strena seu de Nive Sexangula
(On the Six-Cornered Snowflake) from 1611, which was his
New Year’s gift to his friend and supporter Johann Matthäus
Wacker von Wackenfels (1550–1619). He explains the for-
mation of snowflakes into crystals having sixfold symmetry
by drawing an analogy to dense sphere packings that pos-
sess the same kind of symmetry. The general acceptance of
atomism was yet to come, so this explanation was a remark-
able achievement. Kepler’s work is the first scientific writing
about crystal formation; in it he claims (essentially without
any justification) that a specific periodic structure, the face-
centered cubic lattice, describes the densest sphere packing
having density π/

√
18 = 0.74 . . . . This claim is now called

Kepler’s conjecture.
In 1998 Thomas Hales proved Kepler’s conjecture. His

proof makes heavy use of computers; and in 2009 he, to-
gether with his student Samuel P. Ferguson, was rewarded
the Fulkerson Prize for his work.

The sphere packing problem, and more generally the prob-
lem of packing copies of a given body, was also considered by
David Hilbert. He mentioned it as part of his 18th problem:

18. Building up of Space from Congruent Polyhe-
dra
. . . I point out the following question, related to the
preceding one, and important to number theory and
perhaps sometimes useful to physics and chemistry:
How can one arrange most densely in space an in-
finite number of equal solids of given form, e.g.,
spheres with given radii or regular tetrahedra with
given edges (or in prescribed position), that is, how
can one so fit them together that the ratio of the
filled to the unfilled space may be as great as pos-
sible?

The problem of packing congruent copies of regular tetra-
hedra, mentioned by Hilbert, goes back to Aristotle’s (384–
322 BC) refutation of a theory of Plato (428–348 BC), pre-
sented in the Timaeus, that claimed that each of the four
elements had a specific shape, namely, one of the Platonic
solids, and that the properties of each element derived from
its shape. So, for instance, earth, the most stable and plastic
element, is cubic in shape, and fire, the most acute and most
penetrating element, has the shape of a tetrahedron.

Aristotle presents several arguments against this theory in
his treatise De caelo. In one of his arguments (see De caelo,
Book III, Chapter VIII), he claims that it is irrational to as-
sign geometrical shapes to the four elements, since not all of
space can be thus filled. Indeed, says Aristotle, only the cube
and the pyramid (i.e., the regular tetrahedron) can fill space.
Thus, in order to refute Plato’s theory, Aristotle’s argument
uses the idea of the impossibility of a vacuum, together with
the fact that only two of the solids (corresponding to earth
and fire) can fill the whole of space.

Aristotle’s claim that one can tile space with tetrahedra
was picked up by many of his commentators. Simplicius
of Cilicia (c. 490–c. 560), one of the main commentators of
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Aristotle in late antiquity, even stated that, as eight cubes
are sufficient to fill the space around a given point, so are
twelve regular tetrahedra (see page 42 in the translation by
Mueller [20]).

In the Middle Ages, Aristotle’s Arabic commentator,
Averroës (1126–1198), restated the claim that twelve pyra-
mids fill the space around a point, and he gives an argument
for it. Three planes meet at the vertex of a cube, form-
ing a so-called “solid angle” composed of three right angles.
Eight cubes fill the space around a point in three-dimensional
space, and these eight solid angles add up to a total of 8× 3
right angles. Now, a solid angle of a tetrahedron is composed
of three angles of 60◦ each, totaling two right angles. Since
one needs 8× 3 right angles to fill the space around a point
(as can be seen from the cubes) and since 8× 3 = 12× 2, it
follows that twelve tetrahedra fill the space around a point.

Averroës’ commentary introduced the problem to medieval
schoolmen. Roger Bacon (c. 1214–1294) defended Averroës’
position against the claim that not twelve, but twenty, tetra-
hedra are needed to fill the space around a point. Thomas
Bradwardine (c. 1290–1349) disproved Averroës’ claim with
a simple argument: If indeed one could place twelve regu-
lar tetrahedra around a point in such a way that no empty
space results, then in addition to the five Platonic solids, one
would have another one, which is impossible. According to
him, those who argue that twenty tetrahedra can be placed
around a point have therefore a stronger position, since one
can obtain twenty pyramids by joining the bases of a regu-
lar icosahedron to its center. Bradwardine observes that one
still must check whether the pyramids so obtained are regu-
lar or not, but he leaves the question open (these pyramids
are, as can be shown using the construction of the icosahe-
dron given in the thirteenth book of Euclid’s Elements, not
regular).

The question was finally settled, it is believed, by Johannes
Müller von Königsberg (1436–1476), known as Regiomon-
tanus, who proved that it is impossible to tile space with
regular tetrahedra. Of Regiomontanus’s manuscript only the
title, describing the contents of the work, has been preserved;
but there is no doubt he had all the tools at his disposal to
settle the problem. Francesco Maurolico (1494–1575) com-
puted the angle between two faces of a regular tetrahedron.
This angle, equal to arccos(1/3) ≈ 70.52877◦, is greater than
60◦ and smaller than 72◦. Hence it follows that one cannot
tile space with tetrahedra. Maurolico’s work was recently
rediscovered (see Addabbo [1]). For more on the fascinating
history of the tetrahedra packing problem, including all the
details presented here, see the historical survey by Struik [21]
and the survey by Lagarias and Zong [14].

If one cannot tile space with regular tetrahedra, how much
of space can be filled with them? Even today, the problem
is far from being solved. In 2006, Conway and Torquato [8]
found surprisingly dense packings of tetrahedra. This find-
ing sparked renewed interest in the problem and a race
for the best construction (see Lagarias and Zong [14] and
Ziegler [23]). The current record is held by Chen, Engel,
and Glotzer [4], who found in 2010 a packing with density

≈ 0.8563, a much larger fraction of space than that which
can be covered by spheres. This prompted the quest for up-
per bounds; the current record rests with Gravel, Elser, and
Kallus [10], who proved an upper bound of 1−2.6 . . . ·10−25.
They are themselves convinced that the bound can be greatly
improved:

In fact, we conjecture that the optimal packing den-
sity corresponds to a value of δ [the fraction of
empty space] many orders of magnitude larger than
the one presented here. We propose as a challenge
the task of finding an upper bound with a signifi-
cantly larger value of δ (e.g., δ > 0.01) and the de-
velopment of practical computational methods for
establishing informative upper bounds.

3 Mathematical Modeling
How can one model mathematically the problem of pack-
ing spheres or regular tetrahedra in R3? Packing problems
are optimization problems and can be seen as infinite ana-
logues of a well-known problem in combinatorial optimiza-
tion, namely, the problem of finding a maximum-weight in-
dependent set in a graph. To see this, let us first consider
two kinds of packing problems.

Problem 1 (Translational body packings). Given convex
bodies K1, . . . ,KN ⊆ Rn, how much of Rn can be filled with
pairwise nonoverlapping translated copies of K1, . . . ,KN?

The sphere packing problem is then obtained by taking
N = 1 and letting K1 be the unit ball.

Problem 2 (Congruent body packings). Given a convex
body K ⊆ Rn, how much of Rn can be filled with pair-
wise nonoverlapping congruent (i.e., translated and rotated)
copies of K?

Here letting K be the unit ball gives the sphere packing
problem, and letting K be the regular tetrahedron gives the
tetrahedra packing problem. In a sense, Problem 2 is a lim-
iting case of Problem 1: Given a convex body K one tries to
pack translative copies of infinitely many rotations AK of K,
where A ∈ SO(n) and SO(n) is the special orthogonal group
of Rn (i.e., the group of all orthogonal n × n matrices with
determinant 1).

We call a union of nonoverlapping (congruent or trans-
lated) copies of some bodies a packing of these bodies. In
a packing bodies are allowed to touch on their boundaries
but not to intersect in their interiors. The fraction of space
covered by a packing is its density, so our goal is to find the
maximum density of packings. Here we are using an infor-
mal definition of density; in Section 6 we will give a precise
definition.

Let G = (V,E) be a graph, finite or infinite. An indepen-
dent set is a set I ⊆ V that does not contain adjacent ver-
tices. Packings of bodies can be seen as independent sets in
some specially defined graphs called packing graphs. Given
convex bodies K1, . . . ,KN ⊆ Rn, the translational packing
graph of K1, . . . ,KN is the graph G whose vertex set is
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{1, . . . , N} × Rn. The vertices of G correspond to possible
choices of bodies in the packing: vertex (i, x) corresponds to
placing the body x+Ki in the packing. This interpretation
defines the adjacency relation of G: vertices (i, x) and (j, y)
are adjacent if the corresponding bodies overlap, that is, if

(x+Ki)◦ ∩ (y +Kj)◦ 6= ∅,

where A◦ is the interior of set A. Hence, independent sets of
G correspond to packings of translated copies of K1, . . . ,KN
and vice versa.

A similar idea can be used regarding packings of congru-
ent copies of a given convex body K. Given such a body, we
consider its congruent packing graph, which is the graph G
whose vertex set is SO(n)×Rn. The elements of SO(n) cor-
respond to the possible rotations of K, so that a vertex (A, x)
of G corresponds to placing the body x+AK in the packing.
Again, this gives the adjacency relation of G: vertices (A, x)
and (B, y) are adjacent if

(x+AK)◦ ∩ (y +BK)◦ 6= ∅.

With this, independent sets of G correspond to packings of
congruent copies of K and vice versa.

Packings therefore correspond to independent sets of the
packing graph. If we measure the weight of an independent
set by the density of the associated packing, then Problems 1
and 2 ask us to find maximum-weight independent sets in the
corresponding packing graphs.

Does this modeling help? Finding a maximum cardinality
independent set in a finite graph is a well-known NP-hard
problem, figuring in Karp’s list of 21 problems. Many tech-
niques have been developed in combinatorial optimization
to deal with hard problems: the basic approach is that one
tries to develop efficient methods to find lower and upper
bounds. In the case of the maximum-cardinality indepen-
dent set problem, lower bounds are constructive and come
from heuristics that try to find independent sets of large
size. Analogously, for packing problems one has the adap-
tive shrinking cell scheme of Torquato and Jiao [22], which
can successfully generate dense packings.

As for upper bounds, Lovász [16] introduced a graph pa-
rameter, the theta number, that provides an upper bound
for the maximum cardinality of independent sets of a finite
graph; Lovász’s theta number can be computed efficiently
by using semidefinite optimization. The most successful ap-
proaches to obtaining upper bounds for the maximum den-
sities of packings all use extensions of the theta number.
The theta number can be extended naturally to graphs hav-
ing compact vertex sets, as we show in Section 4; still, this
extension cannot be applied to the packing graphs we de-
scribed above, because they have noncompact vertex sets.
These graphs can be compactified, however, as we discuss in
Section 6, and then the extension of the theta number can
be applied.

4 The Lovász Theta Number and an Exten-
sion

The independence number of a graph G = (V,E) (finite or
infinite) is the graph parameter

α(G) = max{ |I| : I is independent }.

Given a nonnegative weight function w : V → R+, one may
also define the weighted independence number of G as

αw(G) = max{w(I) : I is independent },

where w(I) =
∑
x∈I w(x). Weights will be useful in pack-

ing problems because, when we want to pack different kinds
of bodies, such as spheres having different radii, the weight
function allows us to distinguish between big and small bod-
ies.

The theta number introduced by Lovász [16] provides an
upper bound to the independence number of a graph. It
was later strengthened and extended to the weighted case
by Grötschel, Lovász, and Schrijver [11]. Many equivalent
ways of defining their graph parameter exist; the one most
convenient for us is the following. Given a finite graph G =
(V,E) and a weight function w : V → R+, we define

ϑ′w(G) = min M
s.t. K(x, x) ≤M ∀x ∈ V,

K(x, y) ≤ 0 ∀{x, y} /∈ E with x 6= y,
K ∈ RV×V is symmetric,
K − (w1/2)(w1/2)T is positive semidefinite,

(1)
where w1/2 ∈ RV is such that w1/2(x) = w(x)1/2.

Theorem 1. Let G = (V,E) be a finite graph and w : V →
R+ be a weight function. Then αw(G) ≤ ϑ′w(G).

Proof. Let I ⊆ V be an independent set such that w(I) > 0
(if there is no such independent set, then αw(G) = 0, and
the theorem follows trivially) and let M and K be a feasible
solution of (1).

Consider the sum∑
x,y∈I

w(x)1/2w(y)1/2K(x, y).

This sum is at least∑
x,y∈I

w(x)1/2w(y)1/2w(x)1/2w(y)1/2 = w(I)2

because K − (w1/2)(w1/2)T is positive semidefinite.

The same sum is also at most∑
x∈I

w(x)K(x, x) ≤Mw(I)

because K(x, x) ≤ M and K(x, y) ≤ 0 for distinct x, y ∈ I.
Combining both inequalities proves the theorem.
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Notice that the formulation we use for ϑ′w(G) is a dual
formulation, since any feasible solution gives an upper bound
for the independence number.

Thus, ϑ′w(G) provides an upper bound for αw(G) when G
is finite. When more generally V is a separable and compact
measure space satisfying a mild technical condition, graph
parameter ϑ′w can be extended in a natural way to provide
an upper bound for the weighted independence number.

This extension relies on a basic notion from functional
analysis, that of kernel. Let V be a separable and compact
topological space and µ be a finite Borel measure over V . A
kernel is a complex-valued function K ∈ L2(V × V ).

A kernel K can be seen as a generalization of a matrix.
Like a matrix, a kernel defines an operator on L2(V ) by

(Kf)(x) =

∫
V

K(x, y)f(y) dµ(y).

Kernel K is Hermitian if K(x, y) = K(y, x) for all x,
y ∈ V . Hermitian kernels are the analogues of Hermitian
matrices and an analogue of the spectral decomposition the-
orem, known as the Hilbert-Schmidt theorem, holds, as we
describe now.

A function f ∈ L2(V ), f 6= 0, is an eigenfunction of K
if Kf = λf for some number λ, which is the associated
eigenvalue of f . We say λ is an eigenvalue of K if it is
the associated eigenvalue of some eigenfunction of K. The
Hilbert-Schmidt theorem states that for a Hermitian ker-
nel K, there is a complete orthonormal system ϕ1, ϕ2, . . . of
L2(V ) consisting of eigenfunctions of K such that

K(x, y) =

∞∑
i=1

λiϕi(x)ϕi(y)

with L2 convergence, where the real number λi is the asso-
ciated eigenvalue of ϕi. Then the λi with their multiplicities
are all the eigenvalues of K.

A Hermitian kernel K is positive if all its eigenvalues are
nonnegative; this is the analogue of a positive semidefinite
matrix. An equivalent definition is as follows: K is positive
if for every ρ ∈ L2(V ) we have∫

V

∫
V

K(x, y)ρ(x)ρ(y) dµ(x)dµ(y) ≥ 0.

Using kernels, one may extend the definition of ϑ′w to
graphs defined over separable and compact measure spaces,
simply by replacing the matrices in (1) by continuous kernels.
In other words we define

ϑ′w(G) = inf M
s.t. K(x, x) ≤M ∀x ∈ V,

K(x, y) ≤ 0 ∀{x, y} /∈ E with x 6= y,
K is continuous & Hermitian,
K −W is positive,

(2)

where K : V ×V → R and W ∈ L2(V ×V ) is the kernel such
that W (x, y) = w(x)1/2w(y)1/2.

One then has the following theorem.

Theorem 2. Let G = (V,E) be a graph where V is a sepa-
rable and compact measure space in which any open set has
nonzero measure. Let w : V → R+ be a continuous weight
function. Then αw(G) ≤ ϑ′w(G).

Proof. Since V is compact and since we assume that every
open subset of V has nonzero measure, we may use the fol-
lowing observation of Bochner [3]: a continuous kernel K
is positive if and only if for any choice of N and points

x1, . . . , xN ∈ V we have that the matrix
(
K(xi, xj)

)N
i,j=1

is positive semidefinite.
Using this characterization of continuous and positive ker-

nels, we may mimic the proof of Theorem 1 and obtain the
desired result. This is why we require K to be continuous
in the definition of ϑ′w and also why we require w to be a
continuous function: because we want to apply Bochner’s
characterization to K −W .

As was the case with Theorem 1, any feasible solution
of (2) gives an upper bound for the weighted independence
number. This is useful in the infinite setting because then
it is often harder to obtain optimal solutions. Notice that it
might also be that αw(G) =∞. In this case, the theorem still
holds, since (2) will be infeasible, and therefore ϑ′w(G) =∞.

5 Exploiting Symmetry with Harmonic
Analysis

If G is a finite graph, then computing ϑ′w(G) is solving a
semidefinite program whose value can be found with the help
of a computer; that is, it can be approximated up to arbi-
trary precision in polynomial time. This is a theoretical as-
sertion however; in practice, for moderately big graphs (say,
with thousands of vertices), if one cannot exploit any special
structure of the graph, then computing the theta number is
often impossible with today’s methods and computers.

If the graph G is infinite, we are dealing with an infinite-
dimensional semidefinite program. If one then desires to
use computational optimization methods, at some point the
transition from infinite to finite has to be made. One way to
make this transition is to use finer and finer grids to discretize
the infinite graph and solve the corresponding finite semidef-
inite programs, obtaining bounds for the infinite problem.
For coarse grids, however, this approach performs poorly,
and for fine grids it soon becomes computationally infeasible.
Moreover, with this approach one loses the entire geometrical
structure of the packing graphs.

The alternative is to use harmonic analysis. Instead of
computing ϑ′w in the “time domain,” we could formulate the
optimization problem in the “Fourier domain.” This has a
twofold advantage. First, the Fourier domain can be dis-
cretized essentially by truncation and in doing so we do not
lose too much, since we expect that most of the information
in a well-structured problem (like a packing problem) is to
be concentrated in the beginning of the spectrum. Second,
the translation group Rn acts on the translational packing
graph, and the group of Euclidean motions SO(n)oRn acts
on the congruent packing graph; using harmonic analysis we
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can exploit the symmetry of this situation. On the downside,
an explicit understanding of the harmonic analysis of these
two groups is needed, which in the case of the motion group
can be cumbersome.

To be more concrete, we demonstrate the basic strategy
using the cyclic group Zn. This group is finite, so that dis-
cretization is unnecessary, and Abelian, so that harmonic
analysis becomes simple. Nevertheless, this simple example
already carries many essential features, and it ought to be
kept in mind by the reader when the more complicated cases
are treated later.

Let Σ ⊆ Zn with 0 6∈ Σ be closed under taking negatives,
i.e., Σ = −Σ. Then we define the Cayley graph

Cayley(Zn,Σ) = (Zn, { {x, y} : x− y ∈ Σ} }),

which is an undirected graph whose vertices are the elements
of Zn and where Σ defines the neighborhood of the neutral
element 0; this neighborhood is then transported to every
vertex by group translations. Since Σ = −Σ, the definition
is consistent, and since 0 /∈ Σ, the Cayley graph does not
have loops. For example, the n-cycle can be represented as
a Cayley graph:

Cn = Cayley(Zn,Σ) with Σ = {1,−1}.

The goal in this section is to show that the computation of
the theta number ϑ′e(Cayley(Zn,Σ)) with unit weights e =
(1, . . . , 1) reduces from a semidefinite program to a linear
program if one works in the Fourier domain.

For this we need the characters of Zn, which are group
homomorphisms χ : Zn → T, where T is the unit circle in
the complex plane. Thus, every character χ satisfies

χ(x+ y) = χ(x)χ(y) ∀x, y ∈ Zn.

The characters themselves form a group with the operation
of pointwise multiplication (χψ)(x) = χ(x)ψ(x); this is the

dual group Ẑn of Zn. The trivial character e of Zn defined by
e(x) = 1 for all x ∈ Zn is the unit element. Moreover, if χ is
a character, then its inverse is its complex conjugate χ such
that χ(x) = χ(x) for all x ∈ Zn. We often view characters
as vectors in the vector space CZn .

Lemma 1. Let χ and ψ be characters of Zn. Then the
following orthogonality relation holds:

χ∗ψ =
∑
x∈Zn

χ(x)ψ(x) =

{
|Zn| if χ = ψ,

0 otherwise.

Proof. If χ = ψ, then

χ∗χ =
∑
x∈Zn

χ(x)χ(x) =
∑
x∈Zn

1 = |Zn|

holds. If χ 6= ψ, then there is y ∈ Zn, so that (χψ)(y) 6= 1.
Furthermore, we have

(χψ)(y)χ∗ψ = (χψ)(y)
∑
x∈Zn

χ(x)ψ(x)

=
∑
x∈Zn

χ(x+ y)ψ(x+ y)

=
∑
x∈Zn

χ(x)ψ(x) = χ∗ψ,

so χ∗ψ has to be zero.

As a corollary we can explicitly give all characters of Zn
and see that they form an orthogonal basis of CZn . It follows
that the dual group Ẑn is isomorphic to Zn.

Corollary 3. Every element u ∈ Zn defines a character
of Zn by χu(x) = e2πiux/n. The map u 7→ χu is a group

isomorphism between Zn and its dual group Ẑn.

Proof. One immediately verifies that the map u 7→ χu is well
defined, that it is an injective group homomorphism, and
that χu is a character of Zn. By the orthogonality relation
we see that the number of different characters of Zn is at
most the dimension of the space CZn . Hence |Zn| equals

|Ẑn|, and the map is a bijection.

Given a function f : Zn → C, the function f̂ : Ẑn → C
such that

f̂(χ) =
1

|Zn|
∑
x∈Zn

f(x)χ−1(x)

is the discrete Fourier transform of f ; the coefficients f̂(χ)
are called the Fourier coefficients of f . We then have the
Fourier inversion formula:

f(x) =
∑
χ∈Ẑn

f̂(χ)χ(x).

We say that f : Zn → C is of positive type if f(x) = f(−x)
for all x ∈ Zn and for all ρ : Zn → C we have∑

x,y∈Zn

f(x− y)ρ(x)ρ(y) ≥ 0.

Thus, f is of positive type if and only if the matrix K(x, y) =
f(x−y) is positive semidefinite. With this we have the follow-
ing characterization for the theta number of Cayley(Zn,Σ).

Theorem 4. We have that

ϑ′e(Cayley(Zn,Σ)) =
min f(0)
s.t. f(x) ≤ 0 for all x /∈ Σ ∪ {0},∑

x∈Zn
f(x) ≥ |Zn|,

f : Zn → R is of positive type.

(3)

Alternatively, expressing f in the Fourier domain, we ob-
tain

ϑ′e(Cayley(Zn,Σ)) =

min
∑
χ∈Ẑn

f̂(χ)

s.t.
∑
χ∈Ẑn

f̂(χ)χ(x) ≤ 0 for all x /∈ Σ ∪ {0},
f̂(e) ≥ 1,

f̂(χ) ≥ 0 and f̂(χ) = f̂(χ−1) for all χ ∈ Ẑn.

(4)

Proof. Functions f : Zn → C correspond to Zn-invariant
matrices K : Zn × Zn → C, which are matrices such that
K(x+ z, y + z) = K(x, y) for all x, y, z ∈ Zn.
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In solving problem (1) for computing ϑ′e we may restrict
ourselves to Zn-invariant matrices. This fact can be seen by
a symmetrization argument: If (M,K) is an optimal solution
of (1), then so is (M,K) with

K(x, y) =
1

|Zn|
∑
z∈Zn

K(x+ z, y + z),

which is Zn-invariant.
Thus, we can translate problem (1) into (3). The objective

function and the constraint on nonedges translate easily. The
positive-semidefiniteness constraint requires a bit more work.

First, observe that to require K to be real and symmetric
is to require f to be real and such that f(x) = f(−x) for
all x ∈ Zn. We claim that each character χ of Zn gives an
eigenvector of K with eigenvalue |Zn|f̂(χ). Indeed, using the
inversion formula, we have

(Kχ)(x) =
∑
y∈Zn

K(x, y)χ(y) =
∑
y∈Zn

f(x− y)χ(y)

=
∑
y∈Zn

∑
ψ∈Ẑn

f̂(ψ)ψ(x− y)χ(y)

=
∑
ψ∈Ẑn

f̂(ψ)
∑
y∈Zn

ψ(y)χ(x− y)

=
∑
ψ∈Ẑn

f̂(ψ)χ(x)
∑
y∈Zn

ψ(y)χ(y)

= |Zn|f̂(χ)χ(x),

as claimed.
This immediately implies that K is positive semidefinite—

or, equivalently, f is of positive type—if and only if f̂(χ) ≥ 0

for all characters χ. Now, since f̂(e) = |Zn|−1
∑
x∈Zn

f(x)

and since e is an eigenvalue of K, then K − eeT is positive
semidefinite if and only if

∑
x∈Zn

f(x) ≥ |Zn| and f is of
positive type.

We thus see that (1) can be translated into (3). Using the
inversion formula and noting that f is real-valued if and only
if f̂(χ) = f̂(χ−1) for all χ, one immediately obtains (4).

Cayley graphs on the cyclic group are not particularly ex-
citing. Everything in this section, however, can be straight-
forwardly applied to any finite Abelian group. If, for in-
stance, one considers the group Zn2 , then binary codes can
be modeled as independent sets of Cayley graphs, and the
analogue of Theorem 4 gives Delsarte’s linear programming
bound [9].

6 Upper Bounds for Congruent and Transla-
tional Body Packings

The packing graphs described above have noncompact vertex
sets, but we said they can be compactified so that the theta
number can be applied. Let us now see how that can be
done.

First we need a definition of packing density. Given a
packing P, we say that its density is ∆ if for every p ∈ Rn

we have

∆ = lim
r→∞

vol(B(p, r) ∩ P)

volB(p, r)
,

where B(p, r) is the ball of radius r centered at p. Not every
packing has a density, but every packing has an upper density
given by

lim sup
r→∞

sup
p∈Rn

vol(B(p, r) ∩ P)

volB(p, r)
.

We say that a packing P is periodic if there is a lattice1

L ⊆ Rn that leaves P invariant, that is, P = x + P for
every x ∈ L. Lattice L is the periodicity lattice of P. In
other words, P consists of some bodies placed inside the
fundamental cell of L, and this arrangement repeats itself
at each copy of the fundamental cell translated by vectors of
the lattice.

Periodic packings always have a density. Moreover, given
any packing P, one may define a sequence of periodic pack-
ings whose fundamental cells have volumes approaching in-
finity and whose densities converge to the upper density of
P. Therefore, when computing bounds for the maximum
density of packings, we may restrict ourselves to periodic
packings.

This is the key observation that allows us to compactify
the packing graphs. Let K1, . . . ,KN ⊆ Rn be some given
convex bodies. We have defined the translational packing
graph of K1, . . . ,KN . Given a lattice L ⊆ Rn, we may define
a periodic version of the packing graph. This is the graph
GL, whose vertex set is V = {1, . . . , N} × (Rn/L). Now,
vertex (i, x) of GL corresponds not only to one body, but to
many: specifically, to all the bodies x + v + Ki, for v ∈ L.
Vertices (i, x) and (j, y) are then adjacent if for some v ∈ L
we have

(x+ v +Ki)◦ ∩ (y +Kj)◦ 6= ∅.

Then an independent set of GL corresponds to a periodic
packing of translations of K1, . . . ,KN with periodicity lattice
L, and vice versa.

Graph GL has a compact vertex set and each one of its
independent sets is finite. If we consider the weight function
w : V → R+ such that w(i, x) = volKi, then the maximum
density of a periodic packing with periodicity lattice L is
given by

αw(GL)

vol(Rn/L)
.

Thus, one strategy to find an upper bound for the maximum
density of a packing is to find an upper bound for αw(GL)
for every L.

Notice that V is actually a separable and compact measure
space that satisfies the hypothesis of Theorem 2. Therefore,
ϑ′w(GL) provides an upper bound for αw(GL). Let us see how
one may obtain a feasible solution of (2) for every graph GL.

Let f : Rn → C be a rapidly decreasing function. This is an
infinitely differentiable function with the following property:
any derivative, multiplied by any polynomial, is a bounded
function.

1A lattice is a discrete subgroup of (Rn,+).
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The Fourier transform of f computed at u ∈ Rn is

f̂(u) =

∫
Rn

f(x)e−2πiu·x dx,

where u·x = u1x1+· · ·+unxn. Since f is rapidly decreasing,
the inversion formula holds, giving

f(x) =

∫
Rn

f̂(u)e2πiu·x du.

Consider now a matrix-valued function f : Rn → CN×N ,

where f(x) =
(
fij(x)

)N
i,j=1

and each function fij is rapidly

decreasing. For u ∈ Rn we write

f̂(u) =
(
f̂ij(u)

)N
i,j=1

.

Hence, the Fourier transform of f is also a matrix-valued
function.

We say f is of positive type if f(x) = f(−x)∗ for every
x ∈ Rn and for every L∞ function ρ : Rn → CN we have∫

Rn

∫
Rn

ρ(y)∗f(x− y)ρ(x) dxdy ≥ 0.

One may prove that f is of positive type if and only if f̂(u)
is positive semidefinite for every u ∈ Rn.

We now have the following theorem.

Theorem 5. Let K1, . . . ,KN ⊆ Rn be convex bodies. Sup-
pose f : Rn → RN×N is such that each fij is rapidly decreas-
ing and that it satisfies the following conditions:
(i) fij(x) ≤ 0 whenever (x+Ki)◦ ∩ K◦j = ∅;

(ii) f̂(0) −
(
(volKi)1/2(volKj)1/2

)N
i,j=1

is positive semidefi-

nite; and
(iii) f is of positive type.
Then the maximum density of a packing of translated copies
of K1, . . . ,KN is at most max{ fii(0) : i = 1, . . . , N }.

Proof. Let w : V → R+ be the weight function such that
w(i, x) = volKi for all (i, x) ∈ V . The proof of the theorem
consists in deriving from f , for every lattice L ⊆ Rn, a kernel
KL ∈ L2(V × V ), where V = {1, . . . , N} × (Rn/L), and a
number ML that together give a feasible solution of (2), thus
obtaining an upper bound for αw(GL).

For a given lattice L, we let

KL((i, x), (j, y)) = vol(Rn/L)
∑
v∈L

fij(x− y + v).

The above sum is well defined since each fij is rapidly de-
creasing. Moreover, this implies that KL is continuous.

Given two distinct, nonadjacent vertices (i, x) and (j, y) of
GL, we have that for all v ∈ L,

(x+v+Ki)◦∩(y+Kj)◦ = ∅ ⇐⇒ (x−y+v+Ki)◦∩K◦j = ∅.

This means that fij(x − y + v) ≤ 0 for all v ∈ L. But then
KL((i, x), (j, y)) ≤ 0, as we wanted.

Now we show that KL − W is a positive kernel, where
W ((i, x), (j, y)) = (volKi)1/2(volKj)1/2. This is implied by
conditions (ii) and (iii) of the theorem and can be proven
directly by combining the definition of a positive kernel with
that of a function of positive type. We take another road,
however, and exhibit a complete list of eigenfunctions and
eigenvalues of KL −W .

Let L∗ = {u ∈ Rn : u · v ∈ Z for all v ∈ L } be the
dual lattice of L, and consider the matrix W ′ ∈ RN×N with
W ′ij = (volKi)1/2(volKj)1/2. Since f is of positive type,

for each u ∈ Rn we have that f̂(u) is positive semidefinite.

Moreover, from condition (ii) we have that f̂(0)−W ′ is posi-

tive semidefinite. Hence, the matrices f̂(u)−δuW ′, where δu
equals 1 if u = 0 and 0 otherwise, are positive semidefinite.

For u ∈ L∗, let a1,u, . . . , aN,u be an orthonormal basis of

RN consisting of eigenvectors of f̂(u)−δuW ′, with associated
eigenvalues λ1,u, . . . , λN,u, which are all nonnegative.

Also for u ∈ L∗, let χu(x) = e2πiu·x. Then
(vol(Rn/L))1/2χu, u ∈ L∗, forms a complete orthonormal
system of L2(Rn/L), and so

(vol(Rn/L))1/2ak,u ⊗ χu

for k = 1, . . . , N and u ∈ L∗ forms a complete orthonormal
system of L2(V ). We claim that each such function is an
eigenfunction of KL −W .

Indeed, let (i, x) ∈ V be given. Notice that

[W (ak,u ⊗ χu)]((i, x))

=

∫
V

W ((i, x), (j, y))(ak,u ⊗ χu)(j, y) d(j, y)

=

N∑
j=1

W ′ij(ak,u)j

∫
Rn/L

e2πiu·y dy

=

N∑
j=1

W ′ij(ak,u)j vol(Rn/L)δu

= vol(Rn/L)(W ′ak,u)iδu.

Similarly we have

[KL(ak,u ⊗ χu)](i, x)
=
∫
V
KL((i, x), (j, y))(ak,u ⊗ χu)(j, y) d(j, y)

= vol(Rn/L)

N∑
j=1

∫
Rn/L

∑
v∈L

fij(x− y + v)(ak,u)je
2πiu·y dy

= vol(Rn/L)
∑N
j=1(ak,u)j

∫
Rn fij(x− y)e2πiu·y dy

= vol(Rn/L)
∑N
j=1(ak,u)j

∫
Rn fij(y)e2πiu·(x−y) dy

= vol(Rn/L)
∑N
j=1 f̂ij(u)(ak,u)je

2πiu·x

= vol(Rn/L)(f̂(u)ak,u)ie
2πiu·x.

Putting everything together, we have

[(KL −W )(ak,u ⊗ χu)](i, x)

= vol(Rn/L)(f̂(u)ak,u − δuW ′ak,u)ie
2πiu·x

= vol(Rn/L)λk,u(ak,u)ie
2πiu·x

= vol(Rn/L)λk,u(ak,u ⊗ χu)(i, x).
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We see that all the functions ak,u ⊗ χu are eigenfunctions
of KL −W with nonnegative associated eigenvalues, and it
follows that KL −W is a positive kernel.

We now need to provide the bound ML on the diagonal
elements of KL. To do so, we assume that the minimum
vector of L is large enough that (v + Ki)◦ ∩ K◦i = ∅ for all
nonzero v ∈ L; this involves no loss of generality, since we
care only about lattices with large fundamental cells, and one
can scale L appropriately. But this means that fii(v) ≤ 0
for all i and nonzero v ∈ L. Then from the definition of KL

we have that

KL((i, x), (i, x)) ≤ vol(Rn/L)fii(0)

for all (i, x) ∈ V , and we can take

ML = vol(Rn/L) max{ fii(0) : i = 1, . . . , N }.

We now have that the maximum density of a periodic pack-
ing with periodicity lattice L is

αw(GL)

vol(Rn/L)
≤ ϑ′w(GL)

vol(Rn/L)
≤ max{ fii(0) : i = 0, . . . , N },

proving the theorem.

Theorem 5 was stated in the time domain; but using the
inversion formula and the fact that a matrix-valued func-
tion is of positive type if and only if its Fourier transform
is everywhere positive-semidefinite, we can restate it in the
Fourier domain. We will use this alternative version in the
next section, when we discuss a computational approach for
finding functions f satisfying the conditions required in the
theorem.

When N = 1, Theorem 5 is a direct analogue of Theo-
rem 4. Indeed, then the translational packing graph is actu-
ally a Cayley graph with Rn as its vertex set. Although
noncompact, Rn is an Abelian group, and the functions
χu(x) = e2πiu·x, for u ∈ Rn, give its characters. The Fourier
transform for Rn is the direct analogue of the discrete Fourier
transform for Zn.

Moreover, except for the compactification step and other
technical issues stemming from analysis, the proof of Theo-
rem 5 follows exactly the same pattern of the proof of The-
orem 4. Notice in particular how the characters give eigen-
vectors of the translation-invariant kernel K defined by f .

A theorem similar to Theorem 5 can be proven for packings
of congruent copies of a given convex body K ⊆ Rn. Recall
that the congruent packing graph has as vertex set V =
SO(n) × Rn. Set V is actually a group with identity (I, 0),
where I is the identity matrix, under the operation

(A, x)(B, y) = (AB, x+Ay).

This group is denoted by M(n) and called the Euclidean mo-
tion group.

We will now work with complex-valued functions over
M(n). There is also a definition of what it means for such a
function to be rapidly decreasing, although it is more tech-
nical than the definition for functions over Rn.

A function f ∈ L1(M(n)) is of positive type if f(A, x) =
f((A, x)−1) for all (A, x) ∈ M(n) and for all ρ ∈ L∞(M(n))
we have that∫

M(n)

∫
M(n)

f((B, y)−1(A, x))ρ(A, x)ρ(B, y) d(A, x)d(B, y)

is nonnegative. Here, we take as the measure the product of
the Haar measure for SO(n), normalized so that SO(n) has
total measure 1, with the Lebesgue measure for Rn.

Theorem 6. Let K ⊆ Rn be a convex body. Suppose
f : M(n) → R is rapidly decreasing and that it satisfies the
following conditions:
(i) f(A, x) ≤ 0 whenever (x+AK)◦ ∩ K◦ = ∅;

(ii)
∫
M(n)

f(A, x) d(A, x) ≥ volK; and

(iii) f is of positive type.
Then the maximum density of a packing of congruent copies
of K is at most f(I, 0).

The proof of Theorem 6 is slightly more technical than
the proof of Theorem 5, but otherwise it follows the same
pattern.

Notice that the congruent packing graph is a Cayley graph
whose vertex set is the Euclidean motion group. Thus, The-
orem 6 is also an analogue of Theorem 4. It is, however,
more distant from Theorem 4 than Theorem 5 is, since Rn is
Abelian but M(n) is not. Therefore, when one does harmonic
analysis over M(n), using the characters is not enough: one
also needs to consider higher-dimensional irreducible repre-
sentations, most of them are even infinite-dimensional.

Although Theorem 6 can be restated in the Fourier domain
just as Theorem 4 could, it now becomes harder to carry out
this procedure explicitly—already for n = 2 or 3, the formu-
las involved are significantly more complicated than the ones
for Rn. Using the formulas effectively in a computational ap-
proach remains the main obstacle in applying Theorem 6.

7 A Computational Approach

Theorem 5 and Theorem 6 might be mathematically pleasing
per se, but the real challenge is to determine explicit func-
tions giving good bounds. So far this has been done for only
a few cases. When N = 1, Theorem 5 becomes a theorem
of Cohn and Elkies [5]. The Cohn-Elkies bound provides the
basic framework for proving the best known upper bounds
for the maximum density of sphere packings in dimensions
4, . . . , 36. It is also conjectured to provide tight bounds in
dimensions 8 and 24, and strong numerical evidence sup-
ports this conjecture. De Laat, Oliveira, and Vallentin [13]
have proposed a strengthening of the Cohn-Elkies bound and
computed better upper bounds for the maximum density of
sphere packings in dimensions 4, 5, 6, 7, and 9.

Here we want to give an idea of how to set up a semidefinite
program for finding good functions. Let Bn be the unit ball
in Rn. To find bounds for the density of a sphere-packing,
we want to find a function f : Rn → R with f(0) as small as
possible such that
(i) f(x) ≤ 0 whenever (x+Bn)◦ ∩B◦n = ∅;
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(ii) f̂(0)− volBn ≥ 0; and

(iii) f is of positive type, which means that f̂(u) is nonneg-
ative for all u ∈ Rn.

Without loss of generality we can assume that the function
f is even and radial; in other words, f(x) depends only on
the norm of x, so it is essentially an even univariate function.
Another good feature is that the Fourier transform of a radial
function is radial again. Functions whose Fourier transform
have the form

f̂(u) = p(‖u‖)e−π‖u‖
2

,

where p is an even and univariate polynomial, are dense in
the space of rapidly decreasing even and radial functions.
Then by the Fourier inversion formula we can compute f
explicitly, monomial by monomial, through∫

Rn

‖u‖2ke−π‖u‖
2

e2πiu·x du = k!π−ke−π‖x‖
2

L
n/2−1
k (π‖x‖2),

where L
n/2−1
k is the Laguerre polynomial of degree k with

parameter n/2 − 1. These are orthogonal polynomials on
the half-open interval [0,∞) with respect to the measure
xn/2−1e−x dx.

We specify function f via the polynomial p. To do so, we
fix d > 0 and work with polynomials of degree up to 2d, that
is, with polynomials of the form

p(t) =

d∑
k=0

a2kt
2k.

Working with finite d is our way of discretizing the Fourier
domain, a necessary step as we observed in Section 5.

Now constraints on f become constraints on p, which can
be modeled as sum-of-squares constraints (see, e.g., the ex-
pository papers of Lasserre and Parrilo in SIAG/OPT Views
and News 15-2 (2004)). Thus, we can set up a semidefinite
programming problem to find a function f satisfying the re-
quired constraints:

min
∑d
k=0 akk!π−kL

n/2−1
k (0)

s.t. p(t) =
∑d
k=0 a2kt

2k,

0 =
∑d
k=0 akk!π−kL

n/2−1
k (πw2)

+ vTd (w)Rvd(w) + (w2 − 22)vTd−2(w)Svd−2(w),
p(0)− volBn ≥ 0,
p(t) = vTd (t)Qvd(t),
Q, R, S are positive semidefinite matrices,

where vd(z) = (1, z, . . . , zd) is the vector of all monomials up
to degree d.

From a numerical perspective this formulation is a
catastrophe—a fact well known to specialists in the field—
since the monomial basis is used. Even though the resulting
semidefinite program is small, say when we use d = 10, one
cannot get a solution from standard numerical solvers. On
the other hand this program can be implemented in many
other, equivalent ways by using different choices of polyno-
mial bases. Here we have two choices: one for the vectors

vd and one for testing the polynomial identities. With some
experimentation we found that the basis

Pk(t) = µ−1k L
n/2−1
k (2πt),

where µk is the absolute value of the coefficient of

L
n/2−1
k (2πt) with largest absolute value, performs well.
We believe that the problem of finding a good basis de-

serves further investigation. Currently almost nothing (to
the best of our knowledge only the papers by Löfberg and
Parrilo [15] and Roh and Vandenberghe [18] address this is-
sue) is known about it, although it is a crucial factor for
solving polynomial optimization problems in practice.

Another use of Theorem 5 is to provide bounds for binary
sphere packings. These are packings of balls of two different
sizes; i.e., we have N = 2 and K1, K2 are balls. Binary sphere
packings occur naturally in applications such as materials
science and chemistry. De Laat, Oliveira, and Vallentin [13]
used Theorem 5 to compute upper bounds for the maximum
densities of binary sphere packings in dimensions 2, . . . , 5.

Recently, Oliveira and Vallentin [17] used Theorem 6 to
compute upper bounds for the densities of pentagon pack-
ings. Here a new challenge arises: The Fourier transform
is no longer matrix-valued but takes infinite-dimensional
Hilbert-Schmidt kernels as values. Oliveira and Vallentin de-
termined a first upper bound (0.98 compared with the best
known lower bound of 0.92), and the numerical result ob-
tained gives hope that the theorem will also be useful in the
case of tetrahedra packings to meet the challenge of Gravel,
Elser, and Kallus.

8 Conclusion

It is natural to consider optimization methods when dealing
with geometric packing problems, and we have described here
how well-known methods from combinatorial optimization—
namely, the Lovász theta number and its variants—can be
extended to provide upper bounds for the packing density.
Such extensions provide a uniform framework to deal with
geometric packing problems.

For finite graphs, only in specific cases does the Lovász
theta number provide tight bounds. The same happens for
geometric packing graphs: only in a few cases are the bounds
coming from extensions of the theta number tight; in most
cases, such bounds are but a first step in solving the problem.

The link made with combinatorial optimization techniques
not only allows us to provide a unified framework and to have
access to well-known optimization tools; it also points out to
ways in which such bounds can be strengthened. The obvious
approach is to extend ideas such as the Lasserre hierarchy to
geometric packing problems. Such higher-order bounds can
incorporate more sophisticated constraints like those coming
from the local interaction of more than two vertices; in other
words, we then deal with k-point correlation functions and
not only with 2-point correlation functions.

Schrijver [19] considered 3-point correlation functions for
binary codes, and Bachoc and Vallentin [2] used 3-point cor-
relation functions for packings of spherical caps on the unit

http://www.mcs.anl.gov/~leyffer/views/15-2.pdf
http://www.mcs.anl.gov/~leyffer/views/15-2.pdf
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sphere. De Laat and Vallentin [12] recently showed that this
approach has the (theoretical) potential to solve all geomet-
ric packing problems. However, the price to pay is that the
size of the optimization problems involved grows rapidly.

The success of such techniques will depend on several fac-
tors, including (i) how to analyze the optimization problem
without using a computer, for instance to find asymptotic
results; (ii) how to automatize the use of harmonic analysis;
and (iii) how to solve semidefinite programs involving sums-
of-squares constraints in an efficient and numerically stable
manner.
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In Memoriam
Che-Lin Su (1974–2015)

Che-Lin Su on top of the Titlis (Switzerland) in March 2013 (Photo

courtesy of Ben Skrainka).

Che-Lin Su, a highly respected associate professor at the
University of Chicago Booth School of Business, passed away
on July 31, 2015, after a short illness. Che-Lin was a young
man of great promise and achievement. He earned an inter-
national reputation as a solid researcher, a fine teacher, and
a contributor to several scholarly communities such as eco-
nomics, marketing, optimization, operations management,
and operations research. In his relatively short professional
lifetime, Che-Lin built a collection of collaborators, admirers,
and close friends that spanned the globe.

A native of Taiwan born in 1974, Che-Lin attended the
National Taiwan University, graduating in 1996 with a B.S.
degree in agricultural engineering. In the autumn of 1998, he
entered the M.S. program of the newly merged Department
of Engineering-Economic Systems and Operations Research
(EES-OR) at Stanford. The degree was conferred in January
2001. After just one quarter of master’s-level course work,
however, Che-Lin was strongly encouraged to add doctoral-
level courses to his program of studies and to apply to the
department’s separate Ph.D. program. After having demon-
strated his ability to achieve honor grades in the EES-OR
Department’s doctoral-level optimization courses, Che-Lin
gained admission to its Ph.D. program. As it happened, the
EES-OR Department was to undergo another merger, this
one with the Department of Industrial Engineering and En-
gineering Management (IE-EM). Formed in January 2000,
the new department chose the name Management Science &
Engineering (MS&E). It is from this department that Che-
Lin earned his Ph.D. in 2005.
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The title of Che-Lin’s doctoral dissertation was Equilib-
rium Problems with Equilibrium Constraints: Stationarity,
Algorithms and Applications [3]. The thesis was super-
vised by myself and approved by the reading committee
that included Hung-po Chao (Electric Power Research In-
stitute), Kenneth Judd (Hoover Institution), and Michael
Saunders (MS&E). Equilibrium problems with equilibrium
constraints (abbreviated as EPECs) are a kind of extension of
mathematical programs with equilibrium constraints (called
MPECs for short). The latter is the title of a pioneering
monograph by Zhi-Quan Luo, Jong-Shi Pang, and Daniel
Ralph published in 1996. In August 2004, while he was still
a graduate student, Che-Lin met Jong-Shi Pang, organizer
and host of the (first) International Conference on Contin-
uous Optimization. On that occasion Jong-Shi encouraged
Che-Lin to make contact with Kenneth Judd. These two
connections would grow much closer in the years to come.

Ken played a major role in Che-Lin’s early professional
development and indeed in his later life, right up to its last
day. Che-Lin had a research assistantship with Ken during
the summer of 2005. In August of that year they attended
the International Conference on Complementarity Problems
held at Stanford. Each delivered one of two papers they had
co-authored that summer. The one presented by Che-Lin
was on MPEC approaches to moral-hazard problems. This
summer’s experience would prove to be the beginning of an
enduring research collaboration.

Che-Lin’s writings, speaking appearances, and teaching re-
veal his commitment to a challenging mission, one that oc-
cupied his mind from his days as a doctoral student to the
end of his life: bringing state-of-the-art modeling and com-
putational methods to problems in economics, management
science, and operations. After completing his doctoral stud-
ies at Stanford, Che-Lin became a postdoc at Northwest-
ern University’s Kellogg School of Management, a position
he held from 2005 to 2008. There he was attached to the
Center for Mathematical Studies in Economics and Manage-
ment Science. From 2006 to 2008, he was also a postdoc-
toral research fellow at the National Bureau of Economic
Research. His postdoc advisors were Ken Judd and Karl
Schmedders. While he was at the Kellogg School of Man-
agement, he collaborated with Ken on what became Che-
Lin’s most frequently cited publication: “Constrained Op-
timization Approaches to Estimation of Structural Models”
[4]. This paper appeared in the prestigious journal Econo-
metrica (2012). In this article, the authors demonstrate the
effectiveness and efficiency of the MPEC formulation and so-
lution methodology on single-agent dynamic discrete-choice
models. The results of Monte Carlo experiments comparing
AMPL and MATLAB implementations with the so-called nested
fixed-point (NFXP) algorithm (proposed by Rust in 1987)
show the superiority of the constrained optimization strat-
egy and MPEC formulation. Another important and widely
cited publication of Che-Lin is one called “Improving the Nu-
merical Performance of Static and Dynamic Aggregate Dis-
crete Choice Random Coefficients Demand Estimation” [1].
This paper, which was coauthored with Jean-Pierre Dubé

and Jeremy T. Fox, appeared in the same issue of Econo-
metrica as the aforementioned Judd-Su paper.

In July 2008 Che-Lin joined the faculty at the University of
Chicago Booth School of Business as an assistant professor
of operations management. His teaching and research du-
ties in Chicago were augmented by external lecturing and,
in November 2009, research at the Cowles Foundation for
Research in Economics at Yale University. There he held
a visiting faculty position in the program area devoted to
structural microeconomics, macroeconomics, and economet-
rics.

Che-Lin was promoted to associate professor of operations
management at the University of Chicago Booth School of
Business in 2012, where he continued teaching both MBA-
and Ph.D.-level courses. The latter, obviously much closer to
his research interests, included Numerical Methods in Eco-
nomics and Empirical Research in Operations Management.
In 2011 and 2013 he was invited to teach a course called
Computational Economics at Harvard, and in 2012 he taught
a half-semester course called Computational Methods: Eco-
nomic Dynamics at Yale.

In every year between 2007 and 2015, and in many differ-
ent places, Che-Lin gave a “mini-course” titled Mathematical
Programming Methods for Structural Estimation: Dynamic
Programming, Demand Systems, and Games with Multiple
Equilibria. The principal venues for these lectures were the
Chicago-Argonne Initiative for Computational Economics
and the Zurich Initiative on Computational Economics held
at the University of Zurich. Che-Lin was a featured speaker
at these events and served on their program and selection
committees. Other places where this mini-course was deliv-
ered include the University of Southern California Marshall
School of Business, the Department of Industrial Economics
and Technology Management at the Norwegian University of
Science and Technology, the Cowles Foundation at Yale Uni-
versity, the Department of Economics at Johns Hopkins Uni-
versity, the Department of Econometrics and Operations Re-
search of Tilburg University, and the University of Rochester
Simon School of Business.

A noteworthy item on Che-Lin’s publication list is a pa-
per he coauthored with Jong-Shi Pang and Yu-Ching Lee.
Recently accepted by the journal Operations Research, this
paper is titled “A Constructive Approach to Estimating Pure
Characteristics Demand Models with Pricing” [2]. Here
again, a novel optimization approach to a structural esti-
mation problem is expected to promote its fruitful appli-
cation in econometric and marketing problems, previously
hindered by computational challenges. An extension of the
model with a game-theoretic flavor allows for producers to
be competitive Nash-Bertrand players in price setting. Al-
together, Che-Lin’s mini-courses, teaching, invited lectures,
and research publications demonstrate his advocacy of state-
of-the-art numerical optimization in economics and opera-
tions management.

As many of his friends have said, Che-Lin loved good food
and good company. He enjoyed professional baseball and
attended Giants games in San Francisco and Cubs games in
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Chicago. He also loved classical music and was a subscriber
to Chicago Symphony Orchestra concerts.

On August 10, 2015, Che-Lin was to have spoken in a
session that he organized at the recent ICIAM meeting in
Beijing, but this came too late. Instead, he became the sub-
ject of a moving memorial session in the slot made open by
his untimely death. The session included fond remembrances
contributed by his colleagues and friends and was attended
by many.

Che-Lin Su is survived by his wife, Bella Yang; his par-
ents; and his brother and sister. Che-Lin’s many colleagues,
friends, and admirers join his family in sorrow.

Richard W. Cottle, Professor Emeritus
Department of MS&E, Stanford University, Stanford, CA,
USA, rwc@stanford.edu
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1 Event Announcements

1.1 SIAM Workshop on Combinatorial Scien-
tific Computing 2016 (CSC16)

The SIAM Workshop on Combinatorial Scientific Computing
2016 (CSC16) will take place in Albuquerque, NM, October
10–12, 2016.

CSC16 follows five earlier successful CSC workshops held
roughly biennially since 2004. A new feature of CSC16 is
that there will be a peer-reviewed proceedings associated
with the workshop. The proceedings will be published by
SIAM at http://epubs.siam.org/series/pr and will be
made permanently available with DOI links.

Authors are invited to submit manuscripts that present
original unpublished research in all areas of combinatorial
scientific computing. Topics of interest include, but are not
limited to,
• Combinatorial (discrete) models in scientific computing
• Graph and hypergraph algorithms in scientific comput-

ing
• Sparse matrix computations
• Combinatorial problems in data science and network sci-

ence

• Combinatorial problems in Algorithmic Differentiation
• Combinatorial problems in optimization
• Applications of combinatorial scientific computing

Types of Submissions:
1. Full Papers. Papers should not exceed 10 pages using

double-column format and 11-pt font size. The SIAM
macro to be used for paper preparation will be pro-
vided. Accepted papers will be included in the proceed-
ings, which will be published electronically by SIAM in
its proceedings platform. Accepted papers will be pre-
sented at the workshop as talks.

2. Extended Abstracts. Abstracts should not exceed 2
pages using double-column format and 11-pt font size.
Accepted abstracts will be presented as talks at the
workshop, but will not be published in the proceedings.

Submission will be handled through EasyChair.

Important Dates:
Submission deadline (for both papers and abstracts): May
2, 2016, 11:59pm PDT.
Notification of Acceptance: July 5, 2016.

More details are available on the workshop website http:

//www.siam.org/meetings/csc16.

1.2 ICCOPT 2016 in Tokyo

The Fifth International Conference on Continuous Optimiza-
tion (ICCOPT 2016) will take place in Tokyo, Japan, August
6–11, 2016. The summer school will be held from August
6th to 7th at the National Olympics Memorial Youth Cen-
ter, Yoyogi, Tokyo, and the technical program August 8–11
at the National Graduate Institute for Policy Studies, Rop-
pongi, Tokyo. ICCOPT is a flagship conference of the Math-
ematical Optimization Society, organized every three years.
ICCOPT 2016 is cosponsored by the Operations Research
Society of Japan.

Important Dates:
March 15 Summer School Accommodation Deadline (Stu-

dent)
April 15 Abstract Submission for Parallel Session Deadline
April 15 Summer School Accommodation Deadline (Gen-

eral)
May 16 Abstract Submission for Poster Session Deadline
May 31 Early Registration Deadline
August 6 & 7 Summer School

Plenary Speakers: Francis Bach, INRIA, France; Flo-
rian Jarre, Heinrich Heine Universität Düsseldorf, Germany;
Jong-Shi Pang, University of Southern California, USA;
Shuzhong Zhang, University of Minnesota, USA

Semi-Plenary Speakers: Yu-hong Dai, Chinese Academy
of Sciences, China; Erick Delage, HEC Montréal, Canada;
Mirjam Dür, Universität Trier, Germany; Katsuki Fujisawa,
Kyushu University, Japan; Elad Hazan, Princeton Univer-
sity, USA; Jonathan Kelner, MIT, USA; Caroline Uhler, In-
stitute of Science and Technology, Austria; Rachel Ward,
University of Texas at Austin, USA

More details are available on the conference website at
http://www.iccopt2016.tokyo.
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2 Book Announcements

2.1 The Shapes of Things: A Practical Guide
to Differential Geometry and the Shape
Derivative

By Shawn W. Walker
Publisher: SIAM

Series: Advances in Design and Control, Vol.

28

ISBN: 978-1-611973-95-2, x + 152 pages

Published: June 2015

http: // bookstore. siam. org/ dc28/

About the book: Many things around us have properties
that depend on their shape–for example, the drag character-
istics of a rigid body in a flow. This self-contained overview of
differential geometry explains how to differentiate a function
(in the calculus sense) with respect to a “shape variable.”
This approach, which is useful for understanding mathemat-
ical models containing geometric partial differential equa-
tions, allows readers to obtain formulas for geometric quan-
tities (such as curvature) that are clearer than those usually
offered in differential geometry texts.

Readers will learn how to compute sensitivities with re-
spect to geometry by developing basic calculus tools on sur-
faces and combining them with the calculus of variations.
Several applications that utilize shape derivatives and many
illustrations that help build intuition are included.

2.2 Variational Methods for the Numerical So-
lution of Nonlinear Elliptic Problems

By Roland Glowinski
Publisher: SIAM

Series: CBMS-NSF Regional Conference Se-

ries in Applied Mathematics, Vol. 86

ISBN: 978-1-611973-77-8, xvi + 429 pages

Published: November 2015

http: // bookstore. siam. org/ cb86/

About the book: The author addresses computational
methods that have proven efficient for the solution of a large
variety of nonlinear elliptic problems. These methods can
be applied to many problems in science and engineering, but
this book focuses on their application to problems in contin-
uum mechanics and physics. The book differs from others
on the topic by presenting examples of the power and ver-
satility of operator-splitting methods; providing a detailed
introduction to alternating direction methods of multipli-
ers and their applicability to the solution of nonlinear (pos-
sibly nonsmooth) problems from science and engineering;
and showing that nonlinear least-squares methods, combined
with operator-splitting and conjugate gradient algorithms,
provide efficient tools for the solution of highly nonlinear
problems.

2.3 Electrical Transmission System Cascades
and Vulnerability: An Operations Research
Viewpoint

By Daniel Bienstock
Publisher: SIAM

Series: MOS-SIAM Series on Optimization,

Vol. 22

ISBN: 978-1-611974-15-7, viii + 296 pages

Published: December 2015

http: // bookstore. siam. org/ mo22/

About the book: The power grid can be considered one of
twentieth-century engineering’s greatest achievements, and
as grids and populations grow, robustness is a factor that
planners must take into account. Power grid robustness is
a complex problem for two reasons: the underlying physics
is mathematically complex, and modeling is complicated by
lack of accurate data.

This book sheds light on this complex problem by intro-
ducing the engineering details of power grid operations from
the basic to the detailed; describing how to use optimization
and stochastic modeling, with special focus on the modeling
of cascading failures and robustness; providing numerical ex-
amples that show “how things work”; and detailing the ap-
plication of a number of optimization theories to power grids.

2.4 AIMD Dynamics and Distributed Resource
Allocation

By M. Corless, C. King, R. Shorten,
and F. Wirth
Publisher: SIAM

Series: Advances in Design and Control, Vol.

29

ISBN: 978-1-611974-21-8

Planned Publication: January 2016

http: // bookstore. siam. org/ dc29/

About the book: This is the first comprehensive book
on the AIMD algorithm, the most widely used method for
allocating a limited resource among competing agents with-
out centralized control. The authors offer a new approach
that is based on positive switched linear systems. It is used
to develop most of the main results found in the book, and
fundamental results on stochastic switched nonnegative and
consensus systems are derived to obtain these results.

The original and best known application of the algorithm
is in the context of congestion control and resource alloca-
tion on the Internet, and readers will find details of several
variants of the algorithm in order of increasing complexity,
including deterministic, random, linear, and nonlinear ver-
sions. In each case, stability and convergence results are
derived based on unifying principles. Basic and fundamental
properties of the algorithm are described, examples are used
to illustrate the richness of the resulting dynamical systems,
and applications are provided to show how the algorithm can
be used in the context of smart cities, intelligent transporta-
tion systems, and the smart grid.

http://bookstore.siam.org/dc28/
http://bookstore.siam.org/cb86/
http://bookstore.siam.org/mo22/
http://bookstore.siam.org/dc29/
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3 Other Announcements

2016–17 SAMSI Research Program on Optimization
Optimization is an exceptional field where the coopera-
tion between mathematics and statistics can produce truly
groundbreaking advances. The year-long SAMSI optimiza-
tion (OPT) program aims to capitalize on this synergy and
produce advances in:

1. Optimization for large-scale statistical analyses;
2. Statistical approaches for numerical solution of large-

scale optimization problems; and
3. Applications of optimization.

The OPT program will start with two events:
• Summer School August 8–12, 2016
• Opening Workshop August 29–September 2, 2016

There are various ways to participate in the OPT program:
Membership in remote research working groups, visiting re-
searcher fellowships, and postdoctoral fellowships.

Remote Research Working Groups: The formation
of the working groups is finalized at the Opening Workshop.
From then on, they meet weekly throughout 2016–17, and
on an electronic basis. The goal is to produce research on a
well-defined, specific topic.

Research topics include: Optimization under uncertainty;
convex and semidefinite optimization; robust optimization
sparse regression, and stochastic gradient descent; E/M
and M/M algorithms; mixed integer, linear and nonlin-
ear optimization; PDE-constrained optimization with uncer-
tainties; statistical inverse problems; computation of high-
dimensional covariance functions; Bayesian optimization &
computational decision analysis.

Application areas include: Machine learning; image and
signal processing, and compressed sensing; energy and power
grids; and finance.

Visiting Researcher Fellowships are available for peri-
ods ranging from a few weeks to the whole year 2016–17. Vis-
itors are provided with office space and facilities at SAMSI,
and various types of financial support.

Postdoctoral Fellowships begin in August 2016 and
typically last two years. Appointments are made jointly
between SAMSI and one of its partner universities, where
teaching is a possibility. Extremely competitive salaries,
travel stipends, and health insurance will be offered. Ap-
plication deadline is 15 December 2015.

Questions should be sent to opt@samsi.info.

About SAMSI: The Statistical and Applied Mathematical
Sciences Institute was established in 2002 as a partnership of
Duke University, North Carolina State University, the Uni-
versity of North Carolina at Chapel Hill, and the National
Institute of Statistical Sciences. SAMSI’s mission is to forge
a synthesis of the statistical sciences and the applied math-
ematical sciences with disciplinary science to confront the
hardest and most important data- and model-driven scien-
tific challenges. SAMSI is part of the Mathematical Sciences
Institutes program of the Division of Mathematical Sciences
at the National Science Foundation.

Comments from the
Editors

Optimization Around the World

Congratulations on enjoying the 32nd issue of the SIAM Ac-
tivity Group on Optimization’s newsletter. We’ve managed
to cover the globe, learning about optimization opportunities
in Europe in the run up to the first exascale supercomputer,
packing problems from Brazil (and Germany), preparations
for ICCOPT in Tokyo, and an upcoming year focused on
optimization at SAMSI in the US.

Still Printing (Some Copies)

Many thanks for your feedback to last issue’s question re-
garding the printing of physical copies of Views and News.
The strong consensus was that there was sufficient value in
printing some copies.

Since electronic copies are distributed to the SIAM-OPT
email list and archived online, we will do our part to aggres-
sively reduce the number of physical copies. In addition to
opting out of receiving a physical copy, you can also request
that your physical copy be instead mailed to your organiza-
tion (e.g., for distribution in a student lounge). Please do so
via e-mail (siagoptnews@lists.mcs.anl.gov), which was
also the recommended form of communication in the 1992
debut issue of Views and News! Some electronic highlights
from that issue: intbib.bib has been renamed but is still
available from netlib; most listed email addresses are still
operational (sadly, the .bitnet address is not).

Other Electronic Resources

In light of the remarkable endurance of digital communica-
tion and archives, this issue we solicit your input on other
ways that the activity group could benefit from electronic re-
sources such as the activity group’s wiki (did you know there
was one?).

Are optimization-related job postings sufficiently repre-
sented? Would an archive (available not just to members of
the activity group) of such job postings be valuable? What
activities are underrepresented by other societies?

We welcome your feedback, (e-)mailed directly to us or to
siagoptnews@lists.mcs.anl.gov. Suggestions for new is-
sues, comments, and papers are always welcome! Best wishes
for the new year, see you in 2016,

Stefan Wild, Editor
Mathematics and Computer Science Division, Argonne Na-
tional Laboratory, USA, wild@anl.gov, http://www.mcs.
anl.gov/~wild

Jennifer Erway, Editor
Department of Mathematics, Wake Forest University, USA,
erwayjb@wfu.edu, http://www.wfu.edu/~erwayjb
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