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This issue of SIAG/OPT Views-and-News is dedi-
cated to the 2011 SIAM Conference on Optimiza-
tion. Claudia Sagastizábal has written a beauti-
ful and elegant survey of nonsmooth optimization
showing how traditional methods can be cleverly im-
proved by exploiting structure beyond the black box.
Don’t miss her plenary presentation on Wednesday
at 1pm!

Other highlights of OP11 include the SIAG/OPT
business meeting on Wednesday (6:45-7:15pm) and a
mini-tutorial on Convex Relaxation and Applications
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der, Maryam Fazel, and Etienne de Klerk.

I am grateful to two “Heiners” (or local heroes),
Stefan Ulbrich and Kai Habermehl, for providing at
very short notice a great guide of things-to-do in
Darmstadt. I am sure their ideas will make the al-
ready excellent OP11 meeting even more enjoyable!

Sven Leyffer, Editor
leyffer@mcs.anl.gov

http://www.mcs.anl.gov/~leyffer/

Nonsmooth Optimization:
Thinking Outside of the Black Box

Claudia Sagastizábal
CEPEL, Electric Energy Research Center, Eletrobrás Group.

On leave from INRIA, France. sagastiz@impa.br

1. Introduction

In many optimization problems nonsmoothness ap-
pears in a structured manner, because the objec-
tive function has some special form. In compressed
sensing, for example, regularized least squares prob-
lems have composite objective functions. Likewise,
separable functions arise in large-scale stochastic or
mixed-integer programming problems solved by cer-
tain decomposition technique.

The last decade has seen the advent of a new gen-
eration of bundle methods, capable of fully exploit-
ing structured objective functions. Such informa-
tion, transmitted via an oracle or black box, can be
handled in various ways, depending on how much
data is given by the black box. If certain first-order
information is missing, it is possible to deal with in-
exactness very efficiently. But if some second-order
information is available, it is possible to mimic a
Newton algorithm and converge rapidly.

We outline basic ideas and computational ques-
tions, highlighting the main features and challenges
in the area on simple examples.

2. A Structured Function

For convex optimization, certain complexity results
establish that oracle based methods have at best a
linear rate of convergence. This is why recent nons-
mooth optimization research has focused on exploit-
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ing structure in the objective function, as a way to
speed up numerical methods.

Bundle methods, [HULL93, vol. II], in particular,
have evolved from the early “conjugate subgradient”
methods in [Lem75], [Wol75] to a class of specialized
structured methods with improved performance.

In this new generation of bundle methods, the
word “structure” can mean many different things.
For example, consider the problem of minimizing

f(x) =
√
x>Ax+ x>Bx (1)

over <n, where A,B are two symmetric positive
semidefinite matrices.Suppose for convenience that
B is positive definite, so that the origin is the unique
minimizer.

We now explore different structures for this func-
tion from [LO08], that can be exploited in an algo-
rithmic setting.

2.1 Sum Structure

The most obvious structure in (1) is that the func-
tion is defined by two terms:

f(x) = f1(x) + f2(x) with

{
f1(x) =

√
x>Ax

f2(x) = x>Bx .

This type of basic structure appears often when
decomposing a hard-to-deal-with problem, by La-
grangian relaxation or in a Benders decomposition
scheme, see Sec. 5. below.

2.2 VU-Structure

Theoretical tools such as the U-Lagrangian [LS97a],
[LOS00], VU-space decomposition [MS00], and
partly smooth functions [Lew02], can be seen as tools
to “extract” smooth structure from nondifferentiable
functions. For our example, the function is not dif-
ferentiable on N (A), the null space of the matrix A.
In this region, the first term in (1) vanishes and f
appears as if smooth. This is the U-space; all nondif-
ferentiability of f is concentrated on the orthogonal
complement: for any x ∈ N (A),

V(x) = U(x)⊥ = R(A), the range of A.

The convex partly smooth function (1) is an n-
dimensional extension of the bivariate function
f(x1, x2) = |x1|+ x22. Figure 1 represents the corre-
sponding two views, from the V and U subspaces at
x = (0, x2).

Figure 1: V and U views (left and right).

2.3 Composite Structure

Sometimes it is also possible to “split” smoothness
and nonsmoothness by writing the function as the
composition of a smooth mapping c : <n → <m
with a positively homogeneous (of degree 1) convex
function h : <m → <, so that f = h ◦ c. Note
in particular that the outer function is real-valued
on <m, an assumption that excludes indicator func-
tions, but still covers a rich enough family of func-
tions for interesting problems (max-functions, sum
of Euclidean norms, eigenvalue optimization, regu-
larized minimization maps, `1-penalization of non-
linear programming problems). The function f may
be nonconvex, but with our assumptions the follow-
ing chain-rule holds: ∂f(x) = Dc(x)>∂h(C) where
Dc(x) is the mapping Jacobian and C = c(x).

For the function in (1), one can let m = n+ 1 and
define the inner mapping as

cj(x) = xj , for j = 1, . . . , n and cn+1(x) = x>Bx .

The outer positively homogeneous function is

h(C) =
√
C>
1:nAC1:n + Cn+1 ,

where the notation Ci:j corresponds to the subvec-
tor formed by the ith to jth components of the vector
C ∈ <n+1 = <m. Composite functions were consid-
ered early on in [Fle87, Ch. 14], then in [BF95] and
[Sha03], and have been more recently re-examined
in [Nes07], [LW08], and [Sag10].

3. Knowing More or Knowing
Less: The Oracle Information

Typically, a bundle method defines iterates by mini-
mizing a model of the black box function f , denoted
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by ϕ, which is made up of pieces that together ap-
proximate f in some manner. The set of informa-
tion needed to define the model is called the bundle
B. The prototypical example is the classical cutting-
plane model

ϕ(x) = max
i∈B
{f i + gi>(x− xi)} ,

where the xi’s are past iterates, and

B =
⋃
i

{(
xi, f i = f(xi) , gi ∈ ∂f(xi)

)}
.

In the model definition, we write i ∈ B to mean that
there exists an element in the set B indexed by i.

In order to prevent oscillations, a stabilization
term is added to the model function to cause the
next iterate to be near a “good” point, the last seri-
ous iterate in the bundle terminology, denoted by x̂.
A possible stabilization device is to define iterates by
solving the proximal quadratic programming prob-
lem (QP)

min
x
{ϕ(x) +

1

2
µ|x− x̂|2} ,

where the prox-parameter µ is positive. When the
new iterate gives sufficient decrease in f , the step
is declared serious and replaces x̂. Otherwise, the
step is declared null. In both cases, the bundle B is
enriched with the function and subgradient informa-
tion from the last generated point.

Each linearization in the cutting-plane model is
defined with information produced by the oracle or
black box. In a real-life application, this is a piece of
code written by the user to compute function values
and one subgradient for any given vector x. For the
example in (1), the black box provides

g

f
x

f(x) =
√
x>Ax+ x>Bx

∇f(x) = Ax√
x>Ax

+ 2Bx if 0 6= x ∈ R(A)

g(x) ∈ A
1
2 (B(0; 1)) + 2Bx if x ∈ N (A)

(here B(0; 1) denotes the n-dimensional unit ball.)
The classical cutting-plane model, based on the

bundle B (defined in turn via the black box), is not
the only possibility. For some problems, the user
may be able to provide additional information, while
for other ones, it may be impossible to make exact
black box calculations. Bundle methods can handle
well the availability or unavailability of such informa-
tion. We now review some alternative models that
can be built in such situations.

3.1 Sum Black Box

Consider the sum-structure, f(x) = f1(x)+f2(x). If
for each j = 1, 2 individual subgradients gj(x) ∈
∂fj(x) are known, the disaggregate cutting-plane
model has the form

ϕ(x) = max
i∈B1
{f i1+gi1

>(x−xi)}+max
i∈B2
{f i2+gi2

>(x−xi)} ,

where we defined the individual bundles

Bj =
⋃
i

{(
xi, f ij = fj(x

i) , gij ∈ ∂fj(xi)
)}

for j = 1, 2. Being the sum of maxima, this model
is in principle better than the classical one, given by
the maximum of sums. Note, however, that the bun-
dle of information is also disaggregate and, hence,
larger. This makes each QP larger, and can sub-
stantially increase the CPU time spent in each it-
eration. For a mid-term optimal generation man-
agement problem briefly described in Sec. 5., the
computational study in [BLRS01] shows that it is
advisable to keep the number of terms in the sum
low, by regrouping terms, if necessary.

Incidentally, note that for (1), the second term
f2(x) = x>Bx is smooth. It is then possible to build
the hybrid model

ϕ(x) = max
i∈B1
{f i1 + gi1

>(x− xi)}+ x>Bx ,

which takes advantage of the additional smoothness
in one of the terms (and uses a smaller bundle). We
refer to [LOP11] for an example of the hybrid model
in the area of telecommunications.

3.2 Clear Black Box

For the composite structure, the function and sub-
gradient information can be given separately for the
inner smooth mapping and the outer function. More
precisely, instead of simply having f(x) = (h ◦ c)(x)
and g(x) ∈ ∂(h◦c)(x), we suppose the oracle has the
ability to make separate computations:
∀x ∈ <n an inner black box computes

c(x) and its Jacobian Dc(x)
∀C ∈ <m an outer black box computes

h(C) and a subgradient G ∈ ∂h(C).
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Having this separate information makes it possible
to define the composite model

ϕ(x) = max
i∈Bc

{
Gi>

(
c(x̂) +Dc(x̂)>(x− x̂)

)}
where

Bc =
⋃
i

{
Gi ∈ ∂h(Ci) for Ci = c(xi)

}
and where each xi was generated at some past it-
eration, as before. To understand how this model
is built, replace the smooth mapping by its Tay-
lor linearization around the serious point: c(x̂) +
Dc(x̂)>(x− x̂) and consider the approximation

h(c(x̂) +Dc(x̂)>(x− x̂)) ≈ (h ◦ c)(x) , (2)

introduced in [LW08]. The composite model is noth-
ing but the classical cutting-plane model for the
outer function in this approximation, exploiting the
fact that h is positively homogeneous. We refer
to [Sag10] for details, including intensive numerical
results showing the effectiveness of the approach.

Since for the function (1) the approximation in (2)
is √

x>Ax+ x̂>Bx̂+ 2(Bx̂)>(x− x̂) ,

with smooth rightmost terms, the composite model
could approximate only the first term by cutting
planes. Moreover, if the matrix B is not too large
or too dense, it can be used in the QP for defining
the metric in the quadratic term, instead of using
the prox-parameter (this is comparable to the clear
black box providing also second-order objects.)

3.3 Noisy Black Box

The previous oracles take advantage of additional
knowledge of the function structure. In some situa-
tions, however, the black box has less knowledge, be-
cause computing exact values of the function and one
subgradient is too costly, or just impossible. Bundle
methods in their inexact variants can be used to deal
with inaccurate linearizations.

For the function (1) one could think of a situation
in which the matrix B is too large and dense, and
only some random diagonal elements are known at
any given call.

The corresponding noisy black box will only out-
put approximate values:[

a function estimate fx ∈ [f(x)− εf , f(x) + εg]
a subgradient estimate gx ∈ ∂εf+εgf(x) ,

where the unknown errors εf , εg ≥ 0 are bounded,
and where ∂εf denotes the ε-subdifferential in convex
analysis. As illustrated in Figures 2 and 3, inexact
linearizations no longer define cutting planes.

Figure 2: Exact linearizations.

Figure 3: Inexact linearizations.

The oracle noise needs to be handled carefully, to
detect when inaccuracy becomes too cumbersome.
The detection mechanism is based on whether or not
the optimal QP value is below the best value func-
tion, fx̂. Since the function is convex, a QP value
greater than fx̂ can only be due to linearization in-
accuracy. In such a case, the prox-parameter µ is
decreased, to decrease the next optimal QP value
and bring it closer to fx̂.

This simple noise attenuation step, introduced in
[Kiw06], ensures convergence of the serious inexact
functional iterates to a value that differs from the
exact minimum value by less than 2(εf + εg).
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For the classical cutting-plane model, the noisy
bundle of information is

B =

{
i :
(
xi,

f i = fxi ∈ [f(xi)− εf , f(xi) + εg],
gi = gxi ∈ ∂εf+εgf(xi)

)}
.

Any of the previous models (disaggregate, compos-
ite, hybrid) can be considered in the inexact setting,
by introducing the noisy information into the corre-
sponding bundle.

4. VU Primal-Dual Models

The bundle methodology we just presented can be
considered of primal form, in the sense that a model
for the objective function, ϕ, is being built along it-
erations. Early bundle methods were created using
a dual view, trying to iteratively build an approxi-
mate subdifferential of the function at an optimum,
using ∂ϕ.

The VU algorithm [MS05] is an innovation that
builds a primal-dual model, trying to identify the V-
subspace in order to make a U-Newton move on its
orthogonal complement. The initial step comes from
noticing that bundle QP solution gives the proximal
point of the model ϕ at the serious iterate, x̂. Near
an optimal solution, [MS02] shows that the proxi-
mal point of the function f at x̂ is on a “ridge” of
nondifferentiability, the activity manifold in [Lew02].
So a typical bundle iteration amounts to making an
approximate V-projection. But if we knew the V-
subspace, we would also know its orthogonal comple-
ment, the U-subspace, on which the function looks
smooth. Then, moving in a Newton-like direction
tangent to the manifold would give fast convergence.

After solving a proximal QP as a classical bun-
dle method, the VU-bundle algorithm solves a sec-
ond QP per iteration, to identify the V-subspace and
define a Newton-like direction. Along this direction,
the function behaves nicely, because it coincides with
certain smooth U-Lagrangian. The second QP uses
the dual model built along iterations, which approx-
imates the subdifferential of the U-Lagrangian. This
extra step makes the method provably superlinearly
convergent for the subsequence of serious iterates,
under reasonable assumptions.

5. Some Applications

Our survey so far is by no means exhaustive. At
OP11, there is a range of sessions related to new
variants or applications of bundle methods such as
MS20, CP21, MS24, CP27, and MS64.

We finish with some examples demonstrating the
versatility and power of the bundle methodology.

5.1 Price Decomposition on a Scenario
Tree

We consider a mid-term generation planning prob-
lem over a power mix with 85 classic thermal power
plants, 58 nuclear reservoirs, and one reservoir mod-
eling the spot market, posed by Electricité de France
(EDF) and studied in [BLRS01], [ES10]. The two
year optimization horizon has a daily time discretiza-
tion. Each day is further divided into three periods,
representing peak hours of high demand, base de-
mand, and offpeak hours, yielding more than 1,000
time steps. In this mid-term horizon, the level of de-
mand is the main source of uncertainty, particularly
during winter periods. Uncertainty is modeled with
a scenario tree that typically has more than 50,000
nodes. On each node, an optimization problem with
more than 100 variables and 100 constraints has to
be solved. So, even with a rather simplistic descrip-
tion of the power mix, the resulting stochastic lin-
ear program is large-scale and needs to be solved
by some decomposition technique. Currently, EDF
applies Lagrangian relaxation of the demand con-
straints and solves the dual problem by the variable
metric proximal bundle method [LS97b].

For a given multiplier x, the relaxation uncou-
ples the generation of different power plants, yield-
ing separate subproblems shown in Figure 4. As a
result, the dual function has the sum structure in
Sec. 2.1, with a number of terms equal to the num-
ber of “units” (a term used to refer to both plants
and reservoirs).

Computing the pairs (fj(x), gj(x) ∈ ∂fj(x)) is
very costly for some units j. In particular, for a
scenario tree with 50,000 nodes, evaluating the term
for one nuclear plant amounts to solving a linear pro-
gram with 100,000 variables (generation and reser-
voir levels) and about 300,000 constraints. By con-
trast, a term for any classical thermal plant involves
solving a linear program with 50,000 variables and
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Figure 4: Price decomposition.

constraints. Since, in addition, there is no temporal
coupling between nodes, such linear programs are
solved in milliseconds. There is a huge time differ-
ence between solving all the non-nuclear subprob-
lems and solving only one nuclear subproblem.

For convenience, we regroup terms and write
f(x) = fN1(x) + fN2(x) + fN3(x) + fÑ (x), corre-
sponding, respectively, to nuclear units gathered into
three subsets (with 20, 20, and 18 nuclear units each
one), and to all the non-nuclear units. The employed
cutting-plane model disaggregates the bundle into
the same terms defining f , so that each term in the
sum has an individual cutting-plane model.

The incremental bundle method in [ES10] is an in-
exact bundle method in which the subproblem solu-
tion corresponding to one of the nuclear terms fNj is
skipped, alternating between the three nuclear sub-
sets at different iterations. The missing oracle in-
formation is replaced by estimations given by the
cutting-plane model for fNj . For a tolerance cor-
responding to a deviation in demand satisfaction of
20MW per node of the scenario tree (a negligible
amount, if compared to the average power load of
about 50, 000MW), the incremental bundle method
reaches the same precision as the proximal approach
[LS97b], but uses 25% less CPU-time.

5.2 Two-Stage Stochastic Programming

For two-stage stochastic programs with recourse, the
paper [OSS11] revisits the L-shaped method from a
nonsmooth optimization point of view.

For simplicity, consider the particular case of a
linear program with random right hand side. Given a
convex polyhedron X, the (convex nonsmooth) first-
stage problem is

min
x∈X

c>x+Q(x) for Q(x) := E[Q(x; ξ)] . (3)

The expectation in the objective function is taken
with respect to the probability distribution of a
random variable ξ, over the optimal values of the
second-stage problem, given by

Q(x; ξ) =

{
miny≥0 q>y
s.t. Tx+Wy = h(ξ) .

In the second-stage constraints, T and W are matri-
ces and h is a function of the random variable ξ.

Suppose there are finitely many realizations ξi,
each one with probability pi for i = 1, . . . , N and
let hi = h(ξi). Then the recourse function is separa-
ble along scenarios:

Q(x) =

N∑
i=1

piQi(x) with Qi(x) := Q(x; ξi) .

In this summation, each term corresponds to solving
one linear program, written in a primal or dual form:

Qi(x) =

{
min
y≥0

q>y

s.t. Tx+Wy = hi

=

{
max
u

u>(hi − Tx)

s.t. W>u ≤ q .

(4)

For any given x0 and ξi, if the primal and dual
feasible sets above are nonempty, Qi(x

0) is finite
with subgradients of the form −T>ui, where ui =
ui(x

0) = arg max{u>(hi − Tx0) : W>u ≤ q} is a
solution to the dual linear program.

Once again, the objective function in (3) has a
sum structure, illustrated by Figure 5.

1st-stage x

Q(x)
g(x) ∈ ∂Q(x)

min c>x+Q(x)
x ∈ X

it
h
sc

e
n
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p
r
o
b
le
m

2
n
d
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ta

g
e

P
r
im
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l

Q1(x)

Q2(x)

QN (x)

Figure 5: L-shaped decomposition.

When modeling uncertainty, it is desirable to use
as many scenarios as possible, to ensure an accurate
representation of the underlying stochastic process.
But a large number of scenarios means that Q(x)
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involves the summation of many terms and, hence,
the solution of many linear programs.

In order to save computational time, for some sce-
narios one can either solve (4) only approximately,
or just skip the solution of (4), replacing the miss-
ing information by some reasonable value. From the
1st-stage problem perspective, this means having a
noisy black box, a situation that is well handled by
inexact bundle methods.

In [OSS11] different noisy black boxes are ex-
plored. The collinearity strategy therein groups sce-
narios by looking at the cosines

cos(hi − Tx, hj − Tx) for all scenarios 1 ≤ i, j ≤ N .

Indeed, when for a given pair (i, j) such value is
small, the optimal dual values for Qi(x) and Qj(x)
in (4) are similar. It is then possible to solve only
one linear program, say the one corresponding to
scenario i, and use the dual optimal solution ui as a
proxy for uj , thus defining a noisy black box for Qj .

Figure 6: Accuracy and CPU time.

For seventy seven runs of various stochastic linear
programs with varying values of N , Figure 6 gives
a performance profile comparing the inexact bun-
dle method using a noisy black box given by the
collinearity approach (blue circles), an inexact bun-
dle method using a noisy black box based on sce-
nario selection [HR03] (black dashed line), and the
L-shaped method (red squares).

The measure in the profile is a combination of ac-
curacy and CPU time (each indicator with weight
1
2). The figure shows that the use of the inexact ap-
proach with the collinearity-based noisy black box
gives better results than the L-shaped method. The
same can be said for the scenario selection black box,

but to a lesser extent, at least for the considered
problems, because selecting scenarios makes each it-
eration more costly and slows down the overall pro-
cess.

The collinearity strategy is as accurate as the (ex-
act) L-shaped method, but more than 4 times faster.
The reason is that while the L-shaped method uses
an exact black box (to solve (3) by a cutting-plane
method), the inexact bundle method uses the noisy
black box, which, in average, solves no more than
17% of the N linear programs per iteration. Ta-
ble 1 reports the mean and total number of linear
programs solved by each method for all the runs in
Figure 6.

Method mean total
L-shaped 1,082 83,300
Inexact Bundle, scenario selection 158 12,157
Inexact Bundle, collinearity strategy 179 13,812

Table 1: Linear programs solved by each method.

5.3 Composite and VU optimization

When there is a clear black box, the composite model
can be a good option for some classes of functions.
Such is the case for the function in (1), as shown by
Figure 7, reporting in a semilogarithmic scale the
function values of iterates generated by the com-
posite bundle method in [Sag10] (blue circles) and
BFGS method, with the special line search in [LO08]
(black crosses). The instance corresponds to n = 100
and dimR(A) = 50. Since BFGS only has a heuris-
tic stopping test, we let both algorithms run until
the black box was called 1,000 times.

Figure 7: Function value convergence for (1).
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For the example, the optimal value is zero, so Fig-
ure 7 gives an estimate of the rate of convergence of
the methods. For nonsmooth optimization, BFGS
cannot have superlinear convergence (BFGS is not
even provably globally convergent in such a setting).
We observe that, while the linesearch makes the al-
gorithm descend, BFGS’s generated points are not
converging rapidly. The situation is different with
the composite bundle method. In this case, since the
clear black box outputs the smooth inner Hessians
(all null except for ∇2cn+1(x) = 2B), the second-
order information is incorporated in the metric defin-
ing the quadratic term in the bundle QP. This curva-
ture explains the superlinear-like behavior observed
in the figure for the bundle method.

We finish with a nonsmooth test-function, called
maxquad, [BGLS06, p. 153], given by the piecewise
maximum of five convex quadratic functions in <10.
At the unique optimal solution, four of the quadratic
functions are active, but the fifth (inactive) piece is
stiff, making maxquad an interesting academic exam-
ple for testing different algorithms.

Figure 8: Function value convergence for maxquad.

Figure 8 shows the accuracy on function values for
VU-bundle iterates, in a quasi-Newton variant (green
x), when compared to the composite bundle method
(blue circles), the proximal bundle method [LS97a]
(red squares), and BFGS (black crosses).

We observe the very rapid rate of convergence of
the VU-algorithm. The composite bundle method
is fast, but has some plateaux, corresponding to null
steps. Both the proximal bundle and BFGS methods
tend to stall in speed as they try to get more digits

of precision. This is a well-known phenomenon in
nonsmooth optimization: usually many methods fail
when tightening the stopping tolerance, because the
main difficulty near a kink is in catching a solution
with high accuracy.

Acknowledgements. Thanks to Bob Mifflin for
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11 Things to do in Darmstadt

Beer-Tasting at Braustübl Darmstadt: Go to
Braustübl Darmstadt (close to
main train station and Hotel Mar-
itim) and order a “Bier-Probe”.
Get 5 little beers and find the beer
that’s best for you. Enjoy the open
and friendly atmosphere with the
local people of Darmstadt, called “Heiner”.

Mathildenhöhe. Have a walk over the
Mathildenhöhe. Enjoy the Five-
Finger-Tower, climb its top and
have a perfect view over Darm-
stadt. And don’t miss visiting
the Russian Chapel and the art

nouveau mansions. Right now, there is an exhibition
on Serious Games: War — Media — Art.

Jugendstilbad (Swimming and
Relaxing). Relax in the art nou-
veau style indoor swimming pool.
Take a sauna or relax in a huge spa
area in a newly refurbished oasis of well-being. Per-
fect after a long conference day.

Hundertwasser House. Friedensreich
Hundertwasser is one of the
most famous european artists
and architects with an unmis-
takable style. The building is
also called “Waldspirale” (forest

spiral) because of its distinctive style. Can be per-
fectly combined with Point 5.

Bavarian Beergarden. Have the typical
Bavarian beergarden feeling with beer,
sausages and pretzels. The typical
German way to finish a hard working
day and meet some friends.

Castle Frankenstein. A well-preserved castle
close to Darmstadt. It is rumored that
the novel of monster Frankenstein by
Mary Shelley was inspired by an al-
chemist living in Castle Frankenstein.
It’s located about 10km to the south of

Darmstadt at the beginning of the green valleys of
the Odenwald-mountains.

Oberwaldhaus. When a “Heiner” (local
Darmstadtian) wants to relax, he
travels to the Oberwaldhaus. Here
you can make little boating trips on
a small lake, play miniature golf or
ride a pony.

Rosenhöhe, Oberfeld. Have a
walk in the beautiful site of
Rosenhöhe with more than 10.000
roses blooming especially in the fa-
mous rose-dome.

Market place. Enjoy the atmo-
sphere at the central market place,
not far from the conference loca-
tion. Drink a house-brewed beer at
the “Ratskeller”, enjoy (probably Darmstadt’s best)
ice-cream at “Eis Venezia”, or have a meal at one of
the restaurants located here.

Kletterwald. Climbing high in
the trees, getting filled with
adrenaline, simply fun. You’ll get
to know your own limits in height,

courage and power. Located at “Hochschulsta-
dion” in the southwest of Darmstadt, close to TU
Lichtwiese.

Messel Pit. UNESCO World
heritage, famous for many fossils
found in the pit. A new tourist cen-
tre will welcome you on your trip into the past with
many lost creatures.

Kai Habermehl and Stefan Ulbrich, TU Darmstadt
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Chairman’s Column

I’m writing this as I prepare to come to Darm-
stadt for what promises to be a most exciting meet-
ing, with a great variety of invited and contributed
presentations and minisymposia. Let me just point
out a couple of sessions you might be interested in
attending, as well as giving an idea of what will be
discussed at the SIAM Optimization Activity Group
business meeting.

The bulletin above mentions the mini-tutorial on
Thursday on convex relaxations and applications.
Related to this is the SIAG/Opt Outstanding Paper
Prize session on Tuesday from 1:30–2:30pm, where
the winners, Christine Bachoc from the University of
Bordeaux and Frank Vallentin from CWI, Amster-
dam, will present their work on new upper bounds
on kissing numbers from semidefinite programming.
This shows the power of optimization in the analysis
of problems in discrete geometry and coding the-
ory. Interestingly, both authors have a background
in number theory.

On Thursday from 11:45–12:45pm, there will be a
session on future directions in optimization. The
panel members come from a wide range of back-
grounds — Andreas Griewank, Humboldt University
Berlin, Germany; Juan C. Meza, Lawrence Berkeley
National Laboratory, USA; Franz Rendl, Universität
Klagenfurt, Austria; Claudia Sagastizábal, CEPEL,
Brazil; Philippe L. Toint, University of Namur, Bel-
gium; and Andreas Waechter, IBM T.J. Watson Re-
search Center, USA — and their insights should be
fascinating. Following this is a panel of represen-
tatives of funding agencies, from Canada, Germany,
and the US, which should also be of interest to many.
All of these sessions, panels, and the business meet-
ing take place in Spectrum A.

Wednesday’s business meeting takes place from
6:45–7:15pm. Among the agenda items are:

• Reports on SIAM publications in optimization;

• The SIAG/Opt outstanding paper prize;

• Upcoming related conferences;

• Comments from sister organizations in opti-
mization;

• Discussion of the next SIAM optimization con-
ference OP14; and

• Summary of the current SIAG/Opt member-
ship.

Optimization is now the second largest of SIAM’s
activity groups! I hope to see at the meeting, or if
not, at the conference.

Gute Reise nach Darmstadt!

Michael J. Todd, SIAG/OPT Chair
School of Operations Research and Information
Engineering
Cornell University
229 Rhodes Hall
Ithaca, NY 14853
USA
mjt7@cornell.edu

http://people.orie.cornell.edu/~miketodd/

todd.html

mjt7@cornell.edu
http://people.orie.cornell.edu/~miketodd/todd.html
http://people.orie.cornell.edu/~miketodd/todd.html
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