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1 Introduction

Machine learning (ML) as a field is relatively new. Its be-
ginning is usually attributed to the seminal work of Vapnik
[1] from 1995, but it has grown at exponential speed in the
past 20 years. One can say that ML is a combination of
learning theory, statistics, and optimization and as such has
influenced all three fields tremendously. ML models, while
virtually unknown in the optimization community in 1995,
are one of the key topics of continuous optimization today.
This situation is ironic, in fact, because after Vapnik’s
work the core of ML models shifted to support vector ma-
chines (SVMs)—a well-defined and nice problem that is a con-
vex QP with a simple constraint set. On the other hand,
today, the optimization problem at the core of many ML
models is no longer as clearly defined and is not usually as
nice. The main focus of our article is the evolution of the
central optimization problem in ML and how different funda-
mental assumptions result in different problem settings and
algorithmic choices, from deterministic to stochastic. We
will consider the early SVM setting, which lasted for about
a decade, where the problem was considered to be determin-
istic. In the following decade the perspective on ML prob-
lems shifted to stochastic optimization. And, over the past
couple of years, the perspective has begun changing once
more: The problem is again considered to be deterministic,
but stochastic (or perhaps we should say randomized) algo-
rithms are often deemed as the methods of choice. We will
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outline this evolution and summarize some of the key algo-
rithmic developments as well as outstanding questions.

This article is based on one optimizer’s perspective of the
development of the field in the past 15 years and is inevitably
somewhat biased. Moreover, the field of optimization in ma-
chine learning is vast and quickly growing. Hence, this article
is by no means comprehensive. Most references are omitted,
results are oversimplified, and the technical content is meant
to be simple and introductory. For a much more comprehen-
sive and technically sound recent review, we refer readers to,
for example, [2].

2 Optimization models in machine learning

Optimization problems arise in machine learning in the de-
termination of prediction functions for some (unknown) set
of data-label pairs {X, Y}, where X C R? and Y may con-
tain binary numbers, real numbers, or vectors. Specifically,
given an input vector z € R?, one aims to determine a func-
tion such that when the function is evaluated at x, one ob-
tains the best prediction of its corresponding label y with
(x,y) € {X,V}. In supervised learning, one determines
such a function by using the information contained in a
set {X,Y} of n known and labeled samples, that is, pairs
(xi,9:) € {X, Y} for i € {1,...,n}. Restricting attention to
a family of functions {p(w, z) : w € W C RP} parameterized
by the vector w, one aims to find w, such that the value
p(wy, ) that results from any given input x € X is best at
predicting the appropriate label y corresponding to x. For
simplicity we will focus our attention on binary classifica-
tion, where labels y can take values 1 and —1. Note that the
predictors are often called classifiers.

Our aim is to define an optimization problem to find the
best classifier /predictor; however, we first need to define the
measure of quality by which classifiers are compared. The
quality (or lack thereof) of a classifier is typically measured
by its loss or prediction error. Given a classifier w, a func-
tion p(w,z) € R, and a particular data instance (x,y), the
classical 0 — 1 loss is defined as

0 if yp(w,z) >0
for(p(w,2),) = {1 if yp(w,z) <0.
Thus, this loss outputs a 0 if the classifiers made a correct
prediction or 1 if it made a mistake. Note that £p1 (p(w, x),y)
is not a convex function of w regardless of the form of p(w, x).
Since the data for which the prediction is needed is not
known ahead of time, we assume that (z,y) is randomly
selected from {X,Y} according to some unknown distribu-
tion.! The quality of a classifier w can be measured as

for(w) E(z )~ {23} o1 (p(w, 2), y)] (1)

P yy~ix,yi{yp(w, ) > 0},

which is the probability that p(w,x) gives the correct pre-
diction on data if the data is randomly selected from the

IFor notational simplicity, {X', Y} will hence denote both the distri-
bution of (z,y) and the set of all pairs (z,y), according to the context.

distribution. This quantity is known as the expected risk and
has a clear interpretation as a measure of the quality of a
classifier. All that remains is to find a classifier that mini-
mizes (1)!

Minimizing (1) is a stochastic optimization problem with
unknown distribution. Such problems have been the focus of
simulation optimization and sample average approximation
techniques for a few decades [3-6]. Since the expectation
in (1) cannot be computed, it is replaced by a sample av-
erage. Here, there is an important assumption to be made
that will dictate which optimization approaches are viable:
Can we sample from {X’, Y} indefinitely during the optimiza-
tion process, or are we limited to a fixed set of sample data
that is available a priori? The second option is a more prac-
tical assumption and indeed is usually the preferred choice
in machine learning and dictates the difference between the
optimization in ML and the traditional field of stochastic op-
timization. As we will see later, many optimization methods
for ML are theoretically justified under the assumption of
sampling indefinitely while being applied under the scenario
of a fixed set of sample data.

Assume that we are given a data set {X,Y}: X =
{xY, 22, . 2"} c RYand Y = {y*,92,...,y"} C {+1, -1},
with each data point (z°,y’) selected independently at ran-
dom from {X,Y}. We consider a sample average approxi-
mation of (1):

fonlw) = S5 for (0w, ), 7). &)

This is often referred to as the empirical risk of w.
We now have a pair of optimization problems: the ezpected
risk minimization (the problem we actually want to solve),

w, = argmin,,ey for(w) = B y)~x,3y o1 (p(w, 2), y)],
(3)
and the empirical risk minimization (the problem we can
solve),

. . P 1
W = arg min,, .y fOI (U)) = Ezi:1£01(p(w>mi)7yi)7 (4)

where W C RP. An important question of ML, considered by
learning theory, is how the empirical risk minimizer @ com-
pares with the expected risk minimizer w,. A vast amount of
work has been done on bounding these quantities in learning
theory; see, for example, [7—-9]. Here we present simplified
bounds, which help us convey the key dependencies. Given a
sample set {X,Y} drawn randomly and independently from
the distribution {X’, Y}, with probability at least 1 — 4, the
following generalization bound holds for any w:

W +log(3)
n

| for (w) — for(w)] < O (5)

Moreover, for w and w,, the following esimation bound holds:

o) — fr(w) < 0 [/ LG ) g

n
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where W € R measures the complexity of the set of all possi-
ble classifiers produced by p(w, -) for w € W. The first bound
(5) ensures that at the optimal solution @, the expected risk
represents the empirical risk whenever the right-hand side of
(5) is small. The second bound (6) ensures that the qual-
ity of solution of (4) is almost as good as that of the best
classifier from W. Thus, to learn “effectively,” we need to
balance the complexity W and the size of the data set to keep
the right-hand sides of (5) and (6) small. For instance, in a
“big data” setting, when n is very large, very complex mod-
els with large W and complex p(w,-), such as deep neural
networks, can be effective. In small data cases, however, the
complexity W and the model class may need to be tightly
restricted. Using a larger, more complex, model class can
reduce f()l(w) and fo1(w,), since it may expand the feasible
sets of (4) and (3); however, fo1(w) may be large, compared
with fo1 (@) and fo1(w,), if n is too small compared with W.
This situation is known as overfitting the data. Later we will
discuss some measures of complexity and ways of controlling
them.

We conclude from this discussion that if /(W + log(§))/n
is sufficiently small, then minimizing empirical risk by solv-
ing (4) results in a classifier that approximately minimizes
the expected risk (3). However, several drawbacks to solving
(4) arise. First, because of the nonconvexity and discontinu-
ity of the 0 — 1 loss g1, it is an NP-hard problem. Second,
the loss function is insensitive to the amount of classification
suffered by a classifier for a particular data point. Whether
this is desirable often depends on the application, but it is
believed that (Lipschitz) continuous loss functions may be
more robust for learning. Hence, various convex loss func-
tions are used in practice. For example, the “hinge” loss,
used in SVMs, is a convex approximation of the 0 — 1 loss:

0 if yp(w,z) >1
L —yp(w,z) if yp(w,r) <1.

This loss function is a nonsmooth, Lipschitz-continuous func-
tion and is guaranteed to be convex in w if p(w, ) is linear
in w. The other popular alternative is the “logistic loss,”
which is written as

ly(p(w, x),y) = log(1 + e~¥P(»:2).

This is a smooth, Lipschitz-continuous function and is never
zero. It grows nearly linearly when the error is large (i.e.,
yp(w, x) is very negative), and it approaches zero when there
is no error and yp(w, x) is large and positive. Like the hinge
loss, this loss is convex over w provided p(w,z) is linear in
w.

Hence, in general, given a convex function ¢(p(w,x),y),
measuring the loss incurred when the label is determined by
p(w, ) while the true label is y gives two new optimization
problems:

Wy = arg mianW f(UI) = E(m,y)N{X,y} [Z(p(wa $)7 y)]7 (7)

called the expected loss minimization (the problem we want

to solve), and

0 = axgmin, ey f(w) =~ S0 (o), ). (9)
called the empirical loss minimization (the problem that can
be solved). Fortunately, one can establish bounds similar
to (5) and (6) for f, w., and @ defined above using convex
loss functions. The difference between the case of the 0 — 1
loss we considered previously and the Lipschitz-continuous
loss is the complexity measure, which is used in place of W.
We now briefly discuss complexity measures to illustrate the
connection with the use of regularizers in learning.

Measures of complexity of p(w, -) and W are a central topic
in learning theory and include well-known measures such as
the VC dimension [1] (for 0 — 1 loss) and Rademacher com-
plexity [10, 11]. These measures depend on the set W and on
the function p(w, z), which is applied to compute the classi-
fier output. For example, the most commonly used function
p(w, x) is the linear function w”z. If W = R%, its VC dimen-
sion is known to be d. On the other hand, if for all w € W,
lw]] < Rw and for all z ~ X, ||z|| < Rx, for some Ry and
Rx, then the Rademacher complexity can be bounded by
O(R% R%,); hence, with probability at least 1 — 6,

R% R}, +1og(3)
n

(@) = f(w)[ <O \/ (9)

Numerous other bounds and results for the complexity mea-
sure W exist. In particular, the dependence of the VC di-
mension on the dimensionality of the feature space, d, at
least partially justifies the dimensionality reduction that is
so often employed, when the number of original features is
large compared with the available data set. In particular,
in the case of a linear classification, imposing a constraint
on w that limits the number of nonzeros (i.e., ||w|lo < ¢ for
some integer t) ensures that the VC dimension is bounded
by t. Such a constraint turns the convex empirical loss min-
imization problem (8) into an NP-hard problem again. The
standard technique is then to constrain the ¢; norm of w as
a relaxation of ||wl|p; moreover, instead of adding an explicit
constraint on ||wl|1, a regularization term A|jw||; is added to
the objective, in hopes of promoting the sparsity of @ and
thus the effective dimension of the data. Another popular
regularization term is A||w||3, which naturally ties with the
bound (9) since it tries to control Ry, directly.
In summary, the classical ML optimization problem is for-
mulated as
min fu(w) = 250 0p(w, z5), ) + Ar(w). ()
weR? n
Here, the function r is a convex (potentially nonsmooth)
reqularization function whose presence is designed to control
W and avoid overfitting. As mentioned, common choices are
the ¢1 or ¢ norm of the vector w. The choice of A is not
well understood from a theoretical standpoint. However, it
is clear that large values of A tend to result in smaller W
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but larger empirical loss f (). In principle, one can formu-
late an optimization problem over A that aims at minimiz-
ing f(’lf)) and W together. Such a problem is referred to as
structural risk minimization [7]; however, it is not tractable
by itself. As a heuristic approach that is most commonly
used, problem (P) is solved for various values of the hy-
perparameter A > 0; then the best A and the correspond-
ing solution w are chosen based on the smallest testing loss
(also known as the wvalidation error). Specifically, a testing
set (X', Y") = {(«f,9}),.... (2}, ,yh,)} is allocated a priori
(randomly selected from the same distribution {X, Y}), and
the testing loss is simply

LS Up(ib, 7). ).

it

This approach provides an empirical way of finding the bal-
ance between the optimal empirical loss f () and the right-
hand side of (5) and (6) to approximately minimize the ex-
pected loss f(w).

3 Optimization methods for convex ML

The tremendous synergy between optimization and machine
learning began in the late 1990s with the introduction of
support vector machines. SVMs are a variant of (P), where
{(p(w,x;),y;) is the hinge loss, p(w,z) = w’ ¢(x) with ¢(x)
being a mapping, and r(w) = ||w||?>. The resulting optimiza-
tion problem can be reformulated as a convex quadratic op-
timization problem. The power of SVMs lies in the fact that
the feature vector ¢(x) can be generated from the original
data by mapping = from R? to a much higher-dimensional
space RP, while the QP problem scales only with the number
of data points n.

The interest in the optimization community was weak at
first because, as far as the optimizers were concerned, convex
QP had been solved. After all, between the active set meth-
ods and interior-point methods (IPM), most of the known
QP instances in existence at that time could be easily han-
dled. However, these methods turned out not to be well
suited for large-scale SVM problems. Interior-point methods
had been dismissed by the ML community initially because
of their perceived high per-iteration complexity. In particu-
lar, since the QPs arising from the SVM model scale with the
number of data points and many of them have dense Hes-
sians, the complexity per iteration was seen as O(n?), and the
required storage was seen as O(n?). In fact, closer inspection
established that the complexity is O(np?) and the required
storage is O(np). Hence, if the feature dimension p is small
(for example, in the case of linear SVM, when no mapping
is employed, i.e., ¢(x) = x), then the per-iteration complex-
ity of an IPM scales linearly with the size of the data [12].
The situation is more complex in the case of Kernel SVMs,
where ¢(x) may be a mapping into an infinite-dimensional
space, but some dimensionality reduction can still be applied
to reduce complexity [12, 13].

Active sets methods were not initially adopted by the ML
community possibly because their theory does not guarantee
convergence in polynomial time and their implementation is

time consuming; however, a few methods have been success-
ful in this application [14, 15]. Interior-point methods and
active set methods are still being developed for large-scale
SVMs [16], but they are not the main focus of the optimiza-
tion in the ML community these days. The key reason per-
haps lies in the ubiquitous claim that ML optimization prob-
lems should not be solved accurately, which is what ITPMs and
active set methods do. To an optimizer in the early 2000s
not familiar with learning theory, this claim was puzzling.
Why set up an optimization problem that one wants to solve
inaccurately? Perhaps this is the wrong problem to solve?
Of course, now we know that the answer is yes: problem (P)
indeed is the wrong problem. The right problem is (3) or
(7), for which (P) is just its surrogate.

To see why (P) does not need to be solved accurately, as-
sume that we have obtained an approximate optimal solution
to (P), W, such that

flive) < f(b) +e.

Applying this and the bound (5) to w. and w and using (6),
we can easily show that

Fli) < flwy +0 |22 Lo )

n

From (10) one can see little benefit in reducing the opti-
. . W+log(%)
mization error e much below O —.=% |. But how can

small optimization error be harmful? Why did some of the
ML experts claim that problem (P) should not be solved ac-
curately? This question has not been properly answered to-
day, but some interesting insights have been put forth. While
largely unsubstantiated by theory but supported by practice,
the intuitive explanation is that solving (P) inaccurately by
any algorithm reduces complexity W (by restricting W) and,
hence, provides regularization. In other words, W acts in-
versely proportional to e. While for most algorithms this
has not been shown, some results connect early stopping of
gradient descent with good generalization properties [17, 18].

A much more powerful justification for solving (P) inex-
actly but quickly is given, for example, in [19]. The idea is
simple and beautiful. Recall that we want to solve (7), and
let us select some accuracy € and assume for the moment
that our data set (X,Y) is not fixed but can be sampled in-
definitely from {X,)}. Assume that we apply an algorithm
to solve (P) whose complexity of achieving accuracy e for a
given n is ¢(n, €), which is increasing in n and e~. Our goal
is to compute an e-accurate solution, w, such that

flie) < flw) +¢, (11)

for some given €. Then, using (11), we should aim to have

W+ log(%) <

O < and €<
n 2

SRS
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For fixed p(w,-) and W, with some given complexity W,
this implies that n > O(e?) (note that some log factors are
hidden, depending on the exact generalization bound that is
used). Now let us consider the optimization algorithm and
its complexity c¢(n,e€). Any algorithm that computes f(w)
or the gradient (and perhaps Hessian) of f at each iteration
has O(n) = O(E%) complexity per iteration, regardless of
how fast it converges to the optimal solution. On the other
hand, the stochastic gradient (SG) method does not compute
f(w) and V f(w); instead, at each iteration k it computes an
unbiased estimate of V f(w) based on a random sample zj,
(or a subset of samples S) from {X,Y}:

1

V fi(w) = 5]

Zzeskvgg(p(waxz)ayi) +)\VT(’UJ) (12)

The step is then taken as w*t! = w* — oy V fr(w*) with
step size ay, following some rules (see the survey on the topic
of SG methods and reference therein [2]). If the size of Sk
is bounded by a constant, independent of n or k, then the
SG method has O(1) per iteration complexity. Thus, the SG
method dominates any full-gradient-based method as long as
it can converge to an §-optimal solution in fewer than O(E%)
iterations (since one computation of a full gradient is O(Z%)).
This is indeed the case when (P) is strongly convex (e.g.,
when r(w) = |Jw||?); in this case, the complexity of the SG
method is O(1) [19]. When (P) is not strongly convex, the
complexity of a full-gradient-based method, such as an accel-
erated method, is O(%) = O(=5). Hence, the SG method

whose complexity is O(E%) is still dominant. In summary,
while no clear evidence exits that solving (P) inaccurately is
better than solving it accurately, one has a good theoretical
reason to use a method that is slower in convergence but also
slower in scaling with n.

The SG method has become a workhorse in machine learn-
ing and the default industry standard. However, it has draw-
backs that are well known: Its convergence rate is slow, not
only in theory but also in practice; it does not parallelize
naturally; and it is sensitive to the choice of the step-size
sequence «y, which usually needs to be tuned for each ap-
plication. In particular, the SG method tends to make great
progress in the beginning when the true gradient is large, and
then it stalls when the variance in the gradient estimates be-
comes significant compared with the size of the true gradient.

One common remedy is variance reduction, which is ob-
tained by applying sample average approximation. In our
setting of problem (P) this essentially means that the Sy
sample set is chosen to be large. The question is how large?
In recent work [20], the authors analyze a generic method
for solving stochastic problems, such as (7), where S is in-
creased according to the progress of the underlying determin-
istic algorithm. Since in a strongly convex case the gradient
descent method with sufficiently small step sizes converges
linearly, this implies that the size of Sy should grow expo-
nentially with k. It then follows that for the total number of
samples computed up to iteration K, Zszl |Sk| is propor-
tional to the number of samples in the last iteration |Sk]|,

for any K > 0. Similar techniques of adaptively selecting Sy,
have been proposed in [21] and [2] for the strongly convex
case. Results for nonconvex optimization will be mentioned
when we talk about nonconvex ML models.

SG and the variance reduction techniques just discussed
all assume that one can sample indefinitely from {X,)}.
Only then can we expect to obtain an e-accurate solution
to (7) for any chosen €. However, recall that in ML ap-
plications the sample set (X,Y) is usually given and fixed.
The bad news is that no matter how accurately we solve
the optimization problem (P), the solution will still be at

most /(W + log(3))/n-accurate with respect to solving (7).

However, the good news is that the SG method can be im-
proved by exploiting the structure of (P) as a finite sum of
n functions (plus a simple term). With this structure, sev-
eral successful extensions of SG have been recently proposed:
SAG [22], SAGA [23], SDCA [24], and SVRG [25]. SAG and
SAGA, for example, rely on averaging the past stochastic
gradients in a particular manner and, hence, accumulating
more accurate gradient estimates. As a result, they enjoy
the same convergence rate as do full-gradient methods but
with improved constants. However, these methods require
the storage of n past gradients. SVRG, on the other hand,
does not need to store the gradients; however, it requires
computing the full gradient every n iterations. On the re-
maining iterations it performs “corrections” using stochastic
gradients and a fixed step size. As a result, SVRG also has
the same convergence rate as the full-gradient method, and
the complexity gain over the full-gradient method lies also
(as in SAG and SAGA) in smaller constants. While these
methods are still referred to as stochastic gradient methods,
perhaps one might more appropriately call them random-
ized methods, since they use random steps and rely on the
deterministic nature of (P).

These new randomized methods offer some balance be-
tween the slowly convergent and unstable SG method, which
is theoretically optimal for ML problems, and fast-converging
and robust, but costly, first- and second-order methods.
Which methods are truly the most efficient depends on the
application, computational environment, and data structure.
Adapting SG methods to distributed environments and huge
sparse data sets is a subject of a vast amount of ongoing
work.

4 Deep learning and nonconvex models

While the use of convex models has led to great successes over
the years and is still widespread in the ML community, non-
conver ML models, such as deep neural networks (DNNs),
have become extremely popular because of their impressive
predictive power on perceptual tasks such as speech and im-
age recognition [26, 27].

We now describe a typical DNN. Given an input vector x,
a DNN produces an output value p(w, ) through a series of
successive transformations. These transformations are com-
puted by mneurons that are arranged in one or more layers.
Let a; denote the input vector for layer j (with a; = « for
the first layer) which is passed to each neuron in the layer.
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Then each neuron indexed by, say, ji produces an output
pj(wj,,a;), where p; involves a nonlinear function, such as
a componentwise sigmoid or a hyperbolic tangent function,
and wj, denotes the set of parameters of j,th neuron. The
resulting vector consisting of p;(wj, ,a;) for all k in the jth
layer then defines the input for the next layer, a;;,. Note
that different layers can have different numbers of neurons.
Overall, the entire collection of parameters w needs to be de-
termined, which is typically done by solving an optimization
problem of the form (P). However, one can easily see that
(P) is highly nonlinear and nonconvex even when the loss ¢
and regularization r are convex. Note also that the problem
dimension can grow extremely quickly with the number of
layers and the dimension of the input at each layer.

Hence, the optimization problem (P) for DNNs is non-
convex and high dimensional. Moreover, computation of the
gradient of the objective of (P) is performed by backpropaga-
tion? [28] applied to every data point in X, which makes this
process even more expensive than it is for convex ML models
with large data sets. Second-order information is usually pro-
hibitive to compute and store in the DNN setting; however,
several matrix-free approaches have been proposed [29-31].

As in the convex case, while solving (P) may result in
optimizing the empirical loss f(w)?, we are ultimately inter-
ested in minimizing expected loss f(w), which is not com-
putable. On the one hand, a more complex class of pre-
dictors, such as DNNs, contains some optimal predictor w*,
whose expected loss f(w*) is smaller compared with that of
the predictors from a simpler (say linear) class. But does
this imply that we can find such a powerful predictor in
this complex class even when it exists? In other words, we
need to bound |f(i.) — f(w*)|, where 1, is some approxi-
mate minimizer of (P). Since (P) is nonconvex, we cannot
guarantee | f (W) — f ()| < e. Typically, one can guarantee
[V f(ie)||? < €, which in the nonconvex case does not imply
any bound on |f(w.) — f(w)| < e. Generalization bounds
using the VC dimension of a DNN or other complexity mea-
sures can, in principle, provide bounds on |f(i.) — f(i.)]
and | f(@) — f(w*)|. That is, if the VC dimension of a DNN
is small compared with the number of data points in X, then
the expected loss of any w is not too different from its empiri-
cal loss, and the expected loss of the empirical loss minimizer
w is not too different from the loss of the best possible w*.
However, even these bounds do not appear to be useful, since
the VC dimension of a DNN with millions of parameters is
very large and the training sets are often not sufficiently large
to guarantee good generalization. In practice, regularizers
such as A||w||% are often used, but generalization bounds in-
volving ||w||3 are unknown for DNNs. In summary, why one
would want to try solve (P) for DNNs is unclear, given that
it is difficult and it does not guarantee good predictors. The
answer is unsatisfactory but compelling: Because it often
works! This observation has been stated repeatedly for many

2This is a form of automatic differentiation that uses the structure
of the deep neural network.

3Because of nonconvexity we do not have global optimum guaran-
tees.

machine learning applications and has resulted in a shift of
focus from efficient optimization of convex ML models to the
efficient optimization of nonconvex ML models.

With the new focus on nonconvex models, many optimiza-
tion questions arise relating to what the objective function
of (P) looks like. Empirical and theoretical evidence clearly
shows that this function is very multimodal; hence, it is un-
reasonable to expect standard optimization methods to ob-
tain a global minimizer. On the other hand, researchers have
argued that local minimizers may be sufficient in terms of
obtaining solutions with small empirical loss [32]. The argu-
ment is based on the analysis of random Gaussian functions
in [33], which shows that the local stationary points tend
to have low objective value if they are local minima and
that the only stationary points with high objective value are
likely to be saddle points. While the objective function (P)
is not Gaussian, some numerical evidence was shown to sup-
port the same observation about its saddle points. Hence,
avoiding saddle points and being content with local minima
is seen as crucial in optimizing DNNs. One way of doing
so, which has been known for a long time in continuous op-
timization, is to exploit negative curvature. On the other
hand, without a Al|w||3 regularization term, saddle points of
the objective function of (P) for DNN are often second-order
stationary points; hence, there is no negative curvature in the
second-order Taylor model. If the A||w||? regularization term
is present, then all such saddle points become local minima,
and thus the claim in [33] does not apply. In short, so far
there seem to be no good understanding of the structure of
(P) and how it should be exploited.

Currently, most DNNs are trained by using the SG
method. The reasons for this choice are similar to those
for the convex case, for example, low per-iteration cost and
the ability to provide inexact solutions that have good gener-
alization properties. However, little theoretical support for
these properties exists in the DNN case. Also, while con-
vergence of SG method to a local stationary point can be
established for nonconvex problems, convergence rates are
essentially unknown. In [34] a randomized version of SG is
proposed, with a random stopping criterion that results in a
random iterate X*, for which E(||V f(X?)||?) < € is achieved
if the algorithm runs for at least O(1/€?) iterations. The
expectation is taken over the random gradients and the ran-
dom stopping of the algorithm. Essentially one needs to run
the algorithm multiple times to obtain ||V f(X?)||? < € with
high probability, and thus the method is far from practical.

Despite the objections we listed against the use of second-
order methods, substantial effort has been devoted to mak-
ing them efficient for DNNs, and exploiting curvature is still
considered crucial. Trust-region methods [35] and cubic reg-
ularization methods [36, 37] based on second-order models
are particularly well designed for the task. Moreover, these
methods are now equipped with convergence rate analysis for
nonconvex problems that include convergence to the first-
and second-order stationary points. A comprehensive de-
scription of the worst-case global complexity in terms of con-
vergence to first- and second-order stationary points for de-



Volume 24 Number 1 — October 2016

terministic line search, trust-region, and adaptive cubic reg-
ularization methods can be found in [38, 39] and references
therein.

Recently, some randomized methods for nonconvex opti-
mization have been introduced. In particular, a nonconvex
variant of SVRG has been proposed and analyzed in [40].
Convergence rates of a generic class of optimization methods
that include line search and adaptive cubic regularization but
use random models of the objective* have been established
[41]. In particular, the convergence rate of such a randomized
method has been shown to be the same as that of its fully
deterministic counterpart, save for the constant multiple of
O(ﬁ)7 where p is the fixed probability that the random
models provide sufficiently good approximation of the ob-
jective function. Unlike SVRG and other recent randomized
methods, the methods in [41] do not assume any special form
of the objective function; however, it is assumed that the
function values (but not the derivatives) can be computed
accurately. The reason this assumption is made is to allow
the methods to employ adaptive step sizes, which tend to sig-
nificantly improve the performance of optimization methods
(especially in the nonconvex setting). SG methods, on the
other hand, do not use adaptive step sizes and are sensitive
to the step-size selection.

Fully stochastic variance-reducing trust-region methods
have been developed during the past couple of years [42—44]
and use adaptive trust-region size in the same way as their
deterministic counterparts. Unlike the randomized meth-
ods, they do not exploit any particular form of the objec-
tive function or assume that its values can be computed
accurately. They do assume that the function values (and
possibly derivatives) can be approximated sufficiently well
with high probability. Convergence to a first-order station-
ary point has been shown for these methods. Moreover, the
method, assumptions, and convergence analysis in [42] led to
a recent convergence rate result for a stochastic trust-region
method for nonconvex optimization [45]. The convergence
rate is the same as that of a deterministic method in the
following sense: The expected number of iteration it takes
the method to reach an iterate X* for which |V f(X9)||*> <e
is bounded by O(1/€). This result shows that a relatively
standard trust-region methodology can be efficient in the
stochastic setting and may outperform stochastic gradient
descent.

In conclusion, trust-region methods may play a special role
in optimizing deep neural networks. However, implementing
them efficiently in that setting is an ongoing effort.
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In Memoriam

Jon Borwein: a personal reflection

Borwein at a 2006 summer school in Paseky.

Jon Borwein died on August 2, 2016. His untimely passing
has deprived us all of a singular and brilliant mind and an
inspirational intellectual leader, and I have lost a close per-
sonal friend. Rather than a formal memorial, my words are
a personal reflection on my coauthor (of fifteen papers and
a book [46]), a mentor to whom I owe my career.

Jon’s mathematical breadth and energy make a fascinat-
ing but bewildering picture, extending far beyond traditional
optimization, and challenging to sketch. He delighted in col-
laboration, and many of us knew first-hand his research style:
whirling, exuberant, defamiliarizing, endlessly curious, ele-
gant, scholarly, generous, and honest. He made time for
everyone, no matter their rank or eccentricity. Shortly after
I met Jon, at the height of the public prominence of his work
around pi with his brother Peter, highlighted in their book
[47] and a Scientific American article [48], he remarked to
me how he kept in mind the eminent English mathematician
G.H. Hardy, the sole reader of Ramanujan’s first terse but
prophetic notes.

Early in 1987 Jon had welcomed me to the delightful city
of Halifax, Nova Scotia—then his home. During a two-year
postdoctoral fellowship, I shadowed him closely on his trav-
els. Astonishingly, among his many projects then was a Dic-
tionary of Mathematics [49], and indeed I felt a kind of pro-
saic Boswell to his dizzying Samuel Johnson. In the decade
that followed, we made our independent ways across Canada,
through the University of Waterloo to Simon Fraser Univer-
sity. There, Jon founded the Center for Experimental and
Computational Mathematics, a pioneering base for his inter-
national pre-eminence in experimental mathematics.

Jon laid down many roots. Wikipedia describes him as
a “Scottish mathematician,” born in St Andrews in 1951.
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With his encyclopedic erudition, Jon probably knew John-
son’s poke that “Much may be made of a Scotchman, if he be
caught young”; if he did know, he took it to heart, receiving
his doctorate as a Rhodes Scholar at Oxford. He went on to
spend the core of his career in Canada, where he served as
President of the Canadian Mathematical Society and was
elected a Fellow of the Royal Society of Canada. Along
the way, he was elected a Foreign Member of the Bulgar-
ian Academy of Science, and Fellows of both the American
Association for the Advancement of Science and the Ameri-
can Mathematical Society. He made his final home in 2009
at the University of Newcastle in Australia as Laureate Pro-
fessor and was elected a Fellow of the Australian Academy
of Science.

Jon’s diverse honors make his generous and articulate col-
laborative style all the more striking. He worked and collab-
orated intensely but did not suffer fools gladly. I imagine he
sympathized with another of Johnson’s quips: “Sir, I have
found you an argument; but I am not obliged to find you an
understanding.” He was nonetheless a painstaking and ar-
ticulate stylist and in 1993 won (with his brother Peter and
his long-time collaborator David Bailey) the mathematical
world’s highest honor for exposition, the Chauvenet Prize.
(Sixty years earlier, the winner was G.H. Hardy.)

Jon and his family—his wife, Judi, and two young daugh-
ters, Rachel and Naomi (their sister Tova being yet to
arrive)—more or less adopted me as a family member when
I arrived in Canada. I essentially lived with them during
month-long visits to Limoges, France (where Jon later re-
ceived an honorary doctorate), to the Technion in Israel,
and to Canberra and Newcastle, Australia. The sheer fun
of that last visit probably inspired the Borweins’ later choice
of adopted home.

Life at the Borweins’ home was an inspiring and exhaust-
ing blur. A typical evening involved prodigious and virtu-
oso culinary feats from Judi, feisty debates from Rachel and
Naomi, and multiple simultaneous media playing at full vol-
ume. At a minimum, these included political news (Jon was
intensely active, politically, serving for a while as treasurer of
the Nova Scotia New Democratic Party), major league base-
ball (another domain of erudition), and music. All gradually
dissolved into large glasses of Scotch (Jon’s Scotchness, like
Healey Willan’s, was mostly “by absorbtion”), and then a
call to arms from Jon to prove some reluctant theorem. The
exuberant and dizzying environment mirrored Jon’s mathe-
matics, a style so appealing it quickly sealed my own career
choice as a mathematician.

Jon left us too soon. I seek some small solace in that
during any of his years, Jon’s ideas were at least twice as
good, twice as fast, twice as many, and twice as well shared
as, say, mine. But for his beloved and devoted family, his
death has been simply shocking and untimely.

Optimization theory was just one of Jon’s arenas; but as
the one I know best, I would like to pick out a few personal
favorites, most from that same era. To Jon’s extraordinary
academic family of collaborators, many of whom I race by
unmentioned, my apologies.

A theme running through much of Jon’s work was his em-
phatic belief in optimization and analysis as a single disci-
pline, often unified through the language of set-valued map-
pings. He recognized early, for example, the importance
of characterizing “metric regularity” for constraint systems
[50]-now commonly known as “error bounds,” stably bound-
ing the distance to the feasible region by a multiple of the
constraint error. Such bounds are of widespread interest, in
particular, in the convergence analysis of first-order methods.
Jon and his student Heinz Bauschke used similar ideas in a
deep and long-running study of von Neumann’s alternating
projection algorithm and its relatives [51]. Another theme
underlying much of Jon’s work on the interplay of analysis
and optimization was his extensive use both of proximal anal-
ysis (a technique growing out of viscosity solutions of PDEs
and optimal control) [52] and of generalized derivatives in
surprising contexts, especially Banach space geometry [53].

Perhaps Jon’s most celebrated result in nonsmooth anal-
ysis and optimization is the Borwein-Preiss variational prin-
ciple [54]. A ubiquitous technique throughout variational
mathematics appeals to the existence of a minimizer of a
function. Without some compactness, the argument breaks,
but a famous result of Ekeland rescues it through a small per-
turbation to the original function. Ekeland’s perturbation is,
unfortunately, nonsmooth; but using a deep and surprising
argument, Borwein and Preiss showed that a smooth pertur-
bation will in fact suffice.

Much of Jon’s broader mathematical opus is intertwined
with computation, and he believed fundamentally in the
computer as a tool for mathematical discovery. Many of his
contributions to optimization were, by contrast, conceptual
rather than computational. An interesting exception is the
Barzilai-Borwein method [55], an odd and ingenious non-
monotone gradient-based minimization algorithm that has
attracted growing attention during the big-data-driven resur-
gence of first-order methods.

I cannot resist a nod at my own postdoctoral work with
Jon, much of which grew out of the maximum entropy
methodology for estimating an unknown probability density
from some of its moments. In one of my favorite results from
that period, we showed that a sequence of densities, the kth
of which agreeing with the unknown density up to the first
k moments, need not converge weakly in the space L1, but
nonetheless must do so if each has the maximum possible
Shannon entropy [56, 57].

Jon somehow maintained a fresh, youthful intellectual
style until the end. Sitting on my desktop, dated two weeks
before he died, is his last paper [58], a lovely essay on the
craft of mathematical research. He writes: “I can no longer
resist making some observations... to a young mathemati-
cian... but we are nearly all young longer.” Fortunately, he
shared his advice in the nick of time. His final instruction is
“Above all, be honest.”

The book [46] that Jon and I published together in 2000
has found some popularity, even though we had intended
the material just to be a quick introduction, Chapter 1 of a
serious book. It exists only because I momentarily caught
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up: for a brief and happy time, I could scribe slightly faster
than Jon’s genius could create. The subsequent chapters will
not be done before we meet again.

Adrian Lewis
School of Operations Research and Information Engineering,
Cornell University, USA, adrian.lewis@cornell.edu
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Dictionary of Mathematics,

Roger Fletcher

Roger Fletcher was one of the giants of optimization. He
won the Dantzig Prize in 1997 and the Lagrange Prize in
2006, and he was a fellow of the Royal Society of Edinburgh,
the Royal Society of London, and STAM. Yet despite all these
prizes and accolades, Roger remained humble and approach-
able throughout his career and never lost the sheer joy of
solving problems and finding things out (he described his
discovery of filter methods as making him “tingle when [he]
thought about it”).

Roger started his optimization at the dawn of nonlinear
programming. Having completed his undergraduate degree
at Cambridge on a state scholarship, he went to Leeds Uni-
versity to study for a Ph.D. At the time, Leeds had just
set up one of the first computing labs in the UK. At Leeds,
Roger first met Mike Powell and started a life-long compet-
itive friendship. Mike had been invited to Leeds to present
a seminar on derivative-free optimization but changed his
mind at the last minute and asked whether he could instead
talk about a recent technical report from Argonne by some-
one called Bill Davidon. As it happened, Roger had been
given that same report by his advisor, Colin Reed. When
Mike gave his seminar, he found that Roger already knew
about this new method by Davidon and had a working code.
So the two joined forces to write Roger’s first paper, which
appeared in the Computer Journal in 1963 [59], on what was
later to be known as the DFP method.

The DFP paper was not the only hugely influential paper
to come out of Roger’s time at Leeds. Following a sugges-
tion by his advisor, Roger investigated the use of his line
search to extend the conjugate gradient method to nonlin-
ear functions. The result was the Fletcher-Reeves method
[60]. While neither of these two methods is much in use
today, they represented a transformational moment in non-
linear programming. Roger modestly attributed the credit
for these two first papers to his coauthors: “I had two huge
ideas given to me by people.” He described his time at Leeds
as “probably the happiest period of [my] life”. Many years
later, while a professor at Dundee, he would create a simi-
larly happy environment for his students.

Roger and Mike remained competitive friends throughout
their careers. Roger once recounted a story about when he
and Mike went hiking in the Scottish highlands. As Roger
was slightly younger, he was leaving Mike behind, a situation
that did not sit well with Mike’s competitive nature. So
Mike cleverly asked, “Roger, tell me about the proof of the
conjugate gradient method”—and deftly managed to catch
up with an out-of-breath Roger.

Roger always placed great importance on applications to
drive his research. He believed that applications and nu-
merical work help us understand the challenges of problems
and the limitations of our algorithms. At Leeds, Roger was
working on molecular dynamics calculations that required
the solution of an unconstrained optimization problem, and
his work on the DFP and conjugate-gradient methods was di-
rectly motivated by these applications. Later, Roger worked
closely with the School of Chemical Engineering at the Uni-
versity of Edinburgh. He believed that applied mathematics
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research should ultimately be driven by what problems peo-
ple wanted to solve. Roger also believed in small examples to
show limitations of methods. Recently, he and Yuhong Dai
developed a small example that showed that the Barzilai-
Borwein method can fail for box-constrained problems [63].

A second foundation of Roger’s research philosophy was
software. He believed that software validates theory and at
the same time is a guide to good methods. He wrote a pow-
erful and robust LP solver and later bgpd [66], a Fortran77
package for solving indefinite QPs under degeneracy. These
solvers supported both single- and double-precision arith-
metic, because numerical difficulties would manifest them-
selves first in a single-precision version. His solver shows
some ingenious object-orientesque coding in Fortran77 (even
though I am sure Roger never knew anything about object-
oriented programming or C++)! The QP solver relies on
a matrix algebra “class” that implements the factorization
of the basis matrix. Roger provided both dense and sparse
instantiations of this “class” and opened the possibility for
other classes, for example, for people wishing to exploit the
structure of their problem.

Throughout his career, Roger distrusted textbooks. While
he was working for his Ph.D., he implemented the steep-
est descent method, which was the method of choice at the
time. It failed to solve his problem, and he grew distrustful
of things written in books:

I read in a couple of books (Householder’s book
[61], T think it was; another book, Hildebrand [62]
perhaps). They seemed to suggest that steepest
descent was a very good method. So I tried it, and
it generated reams and reams of paper, punched
paper tape output as the iterations progressed, and
didn’t make a lot of progress.!

However, Roger was just as suspicious of his own opinion, and
not above changing his own mind. When he refereed a paper
by a young Chinese mathematician on the Barzilai-Borwein
method, he initially rejected the idea as useless. Luckily, the
young Chinese mathematician persisted; and the result was
that Roger not only changed his mind but also coauthored a
number of papers with Yuhong Dai [63, 65, 64].

It is this self-doubt and suspicion that enabled Roger to
stay fresh and produce groundbreaking results even late in
his career. When I last met him, he was excited about his re-
cent work on an augmented Lagrangian method for nonneg-
ative QP. He was using a clever transformation of variables
that also allowed him to store a single vector of size n that
combines the primal and dual variables, thereby exploiting
their natural complementarity.

Roger had a great sense of humor (if a somewhat limited
reservoir of jokes). His deadpan humor was famous. On one
occasion, he complemented me, “Nice pullover, is it new?”,
which confused me given Roger’s lack of fashion sense and
the fact that the pullover was quite old. The mystery was
solved when I took the pullover off and discovered a gaping
hole in its sleeve.

1S. Leyffer, “An Interview with Roger Fletcher,” Optima 99, 2015.
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The author and Roger Fletcher at the summit.

Roger was what Americans would call a no-nonsense ap-
plied mathematician who believed in simple arguments and
proofs. At the University of Dundee he fostered a “happy
environment” for his many Ph.D. students and visitors. He
selflessly provided guidance to his students, passing to a new
generation of researchers the luck and good ideas that he felt
he was given. Roger passed away in June 2016 while hiking
in his beloved Scottish highlands.

Sven Leyffer
Mathematics and Computer Science Division, Argonne Na-
tional Laboratory, USA, leyffer@anl.gov
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Christodoulos Achilleus Floudas

My father often repeated
in my childhood that
choosing an advisor is
the most important de-
cision a graduate stu-
dent makes. What-
ever mistakes I made as
a Ph.D. student, I did
one thing exceptionally
well: 1 was privileged
to work for Professor
Christodoulos Achilleus
Floudas. Chris’s com-
mitment to excellence
was inspiring; his belief
in his students was mo-
tivating; his enthusiasm
for global optimization
was contagious.

Chris passed away of
an apparent heart attack on August 14, 2016, while vaca-
tioning in Greece with his family. He is survived by his wife,
Fotini, and their daughter, Ismini. Born August 31, 1959 in
Toannina, Greece, Chris earned a diploma of chemical engi-
neering at the Aristotle University of Thessaloniki in 1982
and a Ph.D. in chemical engineering from Carnegie Mellon
University in 1986. He subsequently moved to Princeton
University where he remained for 29 years and, in 2007, was
appointed Stephen C. Macaleer '63 Professor in Engineering
and Applied Science. In 2015, Chris moved to Texas A&M
University, where he was appointed director of the Texas
A&M Energy Institute and Erle Nye 59 Chair Professor for
Engineering Excellence at the Artie McFerrin Department of
Chemical Engineering.

To name only a few of his accolades, Chris was a member of
the National Academy of Engineering (2011), a STAM fellow
(2013), a Thompson Reuters Highly Cited Researcher in two
consecutive years (2014, 2015), and a corresponding member
of the Academy of Athens (2015). Chris was also an out-
standing mentor and teacher. In 2007, he became the first
recipient of Princeton University’s (now annual) Graduate
Mentoring Award; recognition for his teaching includes the
Princeton University Engineering Council Teaching Award
(1995) and the Aspen Tech Excellence in Teaching Award
(1999). He supervised 34 Ph.D. students and 20 postdoc-
toral research associates; many of these are now internation-
ally leading researchers or professors. Ten further Ph.D. stu-
dents are working on their degrees.’

This reflection focuses on the contributions Chris made
to mathematical optimization, with a particular emphasis
on deterministic global optimization. I will mostly neglect
his contributions to multiscale systems engineering, chemical
process synthesis and design, process operations, computa-

1Professor Floudas’ academic tree: http://titan.engr.tamu.edu/
tree/caf/

tional chemistry, and molecular biology. My central thesis
is that he fundamentally opened the field of deterministic
global optimization, making the discipline industrially rel-
evant and blazing a path where subsequent research could
follow. His unforgettable contribution is to drive mathe-
matical optimization toward everyday relevance: He pushed
the tractability boundary of optimization theory, algorithms,
and implementations using a multitude of applications.

Chris’s Ph.D. thesis, supervised by Professor Ignacio
Grossmann at CMU, investigated the automatic synthesis of
heat exchanger networks [67]. Designing heat exchanger net-
works is a mixed-integer nonlinear program (MINLP) with
long-reaching implications for energy efficiency; a quarter of
the EU 2012 energy consumption came from industry, and
industry uses 73% of this energy on heating and cooling [68].
Chris’s contribution was to derive many possible superstruc-
tures from a mixed-integer linear programming approxima-
tion of the MINLP, fix the binary decision variables, and lo-
cally solve the resulting nonlinear program. Chris also used
flexibility analysis to design networks that can handle un-
certain flowrates and temperatures. Flexibility analysis is a
max-min-max optimization problem quantifying how far pa-
rameters can deviate from their nominal values while main-
taining operational feasibility [69]; the closest analogue in
modern-day mathematical programming research is robust
optimization [70].

Chris developed a passion for deterministic global opti-
mization soon after he started as an assistant professor in
Princeton University’s Department of Chemical Engineering
in 1986. He and his early students developed the global
optimization algorithm GOP, an extension of generalized
Benders decomposition applicable to biconvex optimization
problems [71-73]. Rigorous global optimization was not
new, but Chris was the first to develop global optimization
methodology and then apply these algorithms to important
classes of nonconvex nonlinear chemical engineering prob-
lems, including the pooling problem [74] and phase equilib-
rium [75].

Chris’s interest in computational chemistry led him to de-
velop aBB, a convexification methodology based on the dif-
ference of convex functions. Energy minimization plays a
central role in understanding and predicting the behavior of
natural systems. Using an application to Lennard-Jones mi-
croclusters [76], Chris and Costas Maranas became the first
to apply rigorous global optimization to molecular thermo-
dynamics; energy minimization using local rather than global
optimization may yield significant qualitative and quantita-
tive errors in engineering decision making [77]. To find the
global minimum energy configuration of Lennard-Jones mi-
croclusters, Maranas and Floudas [76] transformed the op-
timization problem, with its nonconvex pair potential term
(1/7‘12 — 2/7"6), into a difference-of-convex program using a
sufficiently large parameter a > 0 multiplied by a quadratic
function. In autumn 1992, Chris took a sabbatical at Impe-
rial College London where, with Wenbin Liu, he generalized
the Maranas and Floudas [76] result to any nonconvex func-
tion with a Lipschitz continuous gradient [78]. These results
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led to the now-famous aBB (a-branch-and-bound) convexifi-
cation methodology where a convex lower bounding function
g™ (x) can be defined for generic nonconvex functions g(x)
with the addition of a separable convex quadratic function
[79]:

9™ () = 9(x) = Y el — ) (as — ab)

1
where a; > max{O, —— min /\(x)} .
2 xL<x<xV

Chris and his coworkers developed protocols to automat-
ically calculate the a parameters and implemented aBB-
based global optimization as a generic MINLP solver [79-
81]. Subsequent advances in «BB theory identified alterna-
tive univariate exponential perturbations [82], piecewise un-
derestimators [83, 84], and nondiagonal aBB [85, 86]. The
dependence on the eigenvalues A of the Hessian matrix of the
second derivatives of g(x) has inspired further investigation
into Hessian matrix spectral bounds [87].

The MINLP solver implementing the aBB methodology,
written with Claire Adjiman and Yannis Androulakis [88],
became Chris’s major vehicle to approach a wide variety of
applications: parameter estimation [89, 90], optimal control
[91], reactor network synthesis [92], semi-infinite program-
ming [93], bilevel programming [94], molecular structure pre-
diction [95], peptide and protein folding [96-101], design un-
der uncertainty [102], constrained systems of equations [103],
phase equilibrium calculations [75, 104-106], and solution
of subproblems within an augmented Lagrangian framework
[107]. In many of these domains, Chris was the first re-
searcher to even attempt applying global optimization.

But Chris was never interested in toy problems or proofs of
concept. If he was going to apply mathematical optimization
to a new problem class, he would always push optimization to
its limit via highly relevant, industrially motivated test cases.
For example, the problem of de novo peptide design begins
with a flexible, 3D protein structure and finds amino acid se-
quences folding into the given template; the possible impact
on both fundamentally understanding protein structure and
developing novel therapeutics is enormous [108, 109]. The
first stage of Chris’s de novo peptide design framework is
to develop many possible amino acid sequences; Chris and
his coworkers identified a deep connection with the quadratic
assignment problem (QAP) and adapted QAP solution tech-
niques to the specific problem [110, 111]. In the second stage,
Chris and his coworkers applied their ASTRO-FOLD tech-
nology (which uses «BB) to generate a 3D peptide structure
[96-101]. This framework for de novo peptide design has
been applied to several therapeutic applications including
cancer [112] and HIV [113, 114].

Energy systems engineering is another domain that in-
spired Chris to make fundamental mathematical optimiza-
tion contributions. As with molecular biology, Chris’s com-
plete refusal to address anything but the most pressing real-
world problems led him to the tractability boundary of math-
ematical optimization. Together with Rich Baliban and
Josephine Elia, Chris designed an optimization framework

for the simultaneous process synthesis, heat and power inte-
gration of a thermochemical hybrid biomass, coal, and nat-
ural gas facility [115]. I remember raising some objections
when Chris said that now we had to globally optimize a
model with 15,439 continuous variables, 30 binary variables,
15,406 equality constraints, 230 inequality constraints, and
335 nonconvex terms [116]. But Chris absolutely insisted
that his piecewise linear underestimation technique for bi-
linear terms [117-119] was not relevant unless it was effec-
tively applied to real-world instances. Subsequently, Chris
and his coworkers applied a similar methodology to press-
ing applications such as designing biomass-based production
of chemicals and fuels [120-122] and transforming municipal
solid waste to liquid fuel [123].

The difficulty of the aforementioned energy systems appli-
cations is primarily rooted in the nonconvex bilinear terms
(e.g., [ - c), that arise with intermediate storage in process
networks [124]. The special structure of the so-called pool-
ing problem is fascinating: Flow variables f are multiplied
by concentration variables ¢, and an undirected graph repre-
sentation of the bilinear terms (where the decision variables
are the nodes and the connecting edges are weighted by the
coefficients) is bipartite [125]. Chris had made major contri-
butions to this problem since 1990 [74], but one of his more
recent intuitions was that piecewise linear underestimators
seemed to be effective in solving the pooling problem [117—
119]. Subsequent results further unpacked this relationship
between the NLP pooling problem and MIP approximations
[126], but still Chris would push me: Why did these piecewise
approximations work so well? How could we eliminate the
computational dependence on parameters? Actually, thanks
to work with Radu Baltean-Lugojan [127], I finally have a
first answer to these questions Chris asked me eight years
ago; I had been so looking forward to upcoming conferences
to tell him all about it.

Chris’s incorrigible, unquenchable enthusiasm for global
optimization was contagious. When I was working with
Chris, he had already developed, with Cliff Meyer, several
important results on the facets of the trilinear monomials
[128, 129]. Chris and Cliff had further generalized these re-
sults to automatically generate the facets of edge-concave
functions, for example, those admitting a vertex polyhedral
envelope [130]. One of my projects extended the Meyer and
Floudas [130] methodology to develop multiterm underesti-
mators for bilinear functions [125]. One day, when Chris was
on a business trip, I sent him an email titled good news (re-
garding facets of bilinear functions) and received this reply
on March 12, 2011 at 08:28 EST:

Dear Ruth,

This is great!!! I would like to see what you and

Jamie have upon my return. I have some additional

ideas that I would like to discuss too.

With best regards,

Chris
I learned later that Chris had been at the Narita airport
in Tokyo during the 2011 Tohoku earthquake that hit 14:46
JST on March 11. Chris was himself a force of nature: Just
24 hours after the aftershocks from the fourth most pow-
erful earthquake ever recorded had mostly stopped, Chris
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was back to actively encouraging his Ph.D. students in their
projects.

Chris’s belief in his students was inspiring. In 2008, when
Chris told me that my early-stage Ph.D. assessment needed a
promise to write and publicly release a global MINLP solver,
I told him he was being unreasonable. He said to do it any-
way; and I must have made a face, because I remember him
telling me sharply: “you will not roll your eyes at your advi-
sor!” He was right in the end, and we released first GloMIQO
[131] and then ANTIGONE [132] as global optimization
solvers in the modeling language GAMS. I really enjoyed
developing the solvers, which incorporated several contribu-
tions Chris and his coworkers made, including those to BB
[80], generalised geometric programming [133, 134], edge-
concave underestimators [130, 135], and automatic transfor-
mations for process networks problems [125, 131].

But, more than anything, I appreciated how Chris made
my work relevant by insisting that it could apply to real-
world problems. One application of ANTIGONE (although I
had nothing to do with it), involved Chris’s developing, with
Fani Boukouvala and Faruque Hasan, a general methodology
for grey-box models [136]. Chris had previously developed
approaches in black-box optimization [137], optimization for
functions without explicit analytical representation, but his
new work was especially exciting because it develops opti-
mization methodology for applications where some of the
governing equations are known but others have to be deter-
mined using a data-driven methodology [138]. Chris and his
coworkers used this methodology to develop a global opti-
mization framework for entire petrochemical planning oper-
ations [139].

Before I close, I need to mention some of the contributions
that Chris made to optimization under uncertainty. Chris
first encountered uncertainty in synthesizing heat exchanger
networks with uncertain flowrates and temperatures [69], and
uncertainty was thereafter a thread that ran throughout his
research [140]. Chris’s early work in optimization under un-
certainty was mostly in flexibility [102], but he later became
keenly interested in robust optimization and introduced the
methodology to the chemical engineering community [141—
144]. In particular, Chris and his coworkers extended robust
optimization, which was originally developed as a convex op-
timization methodology, to important nonconvex problems
including operational planning [145], crude oil scheduling
[146], and the vehicle-routing problem [147].

The contributions Chris made to mathematical optimiza-
tion are legion, but his contributions also extended to sup-
porting the work of many other global optimizers. Together
with Panos Pardalos, Chris and his students published the
Handbook of Test Problems in Local and Global Optimiza-
tion, which has become a standard test set for any global
optimization solver [148]. Chris and Pardalos edited many
other special issues and books together [149-153]; the most
significant is the Encyclopedia of Optimization [154]. These
books brought significant attention to deterministic global
optimization and supported the careers of many researchers.
Also deserving mention is the close friendship between Chris

and Stratos Pistikopoulos; the two met as undergraduates
and forged a tight connection while both were Ph.D. stu-
dents at CMU. They were collaborators [73, 140, 155, 156],
but another lasting result of Chris and Stratos’s friendship
was their roles as founding director and associate director,
respectively, of the Texas A&M Energy Institute. There the
work of Chris continues: The Ph.D. students of Chris are
all keen to continue with Stratos the work they started with
Chris.

Chris Floudas and the author at the 2014 AIChE Annual
Meeting.

Ruth Misener
Department of Computing, Imperial College London, UK,
r.misener@imperial.ac.uk
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Bulletin

Email items to siagoptnews@lists.mcs.anl.gov for
consideration in the bulletin of forthcoming issues.

1 Event Announcements
1.1 SIAM Conference on Optimization (OP17)

SIAM Conference on

N\

Based on Audet and Dennis’plot of Kolda,
OPTIMIZATION

Lewis and Torczon’s modification of the

Dennis-Wood canoe function.

\

May 22-25, 2017
Sheraton Vancouver Wall Centre
Vancouver, British Columbia, Canada

The SIAM Conference on Optimization (OP17) will fea-
ture the latest research in theory, algorithms, software, and


http://www.optimization-online.org/DB_HTML/2016/05/5457.html
http://www.optimization-online.org/DB_HTML/2016/05/5457.html
siagoptnews@lists.mcs.anl.gov
http://www.siam.org/meetings/op17/index.php

Volume 24 Number 1 — October 2016

17

applications in optimization problems. A particular empha-
sis will be put on applications of optimization in health
care, biology, finance, aeronautics, control, operations re-
search, and other areas of science and engineering. The
conference brings together mathematicians, operations re-
searchers, computer scientists, engineers, software develop-
ers, and practitioners, thus providing an ideal environment
to share new ideas and important problems among special-
ists and users of optimization in academia, government, and
industry. Themes for this conference are as follows:

e Applications in Health Care

e Applications in Energy Networks and Renewable Re-

sources Integer Optimization

e Applications in Machine Learning and Signal Processing
Combinatorial and Mixed Integer Nonlinear Optimiza-
tion
Conic Optimization
Derivative-free Optimization
Graphs and Networks
Nonlinear Optimization

Deadlines (Midnight Eastern Time)

October 24: Minisymposium Proposal Submissions
November 21: Contributed Lecture, Poster, and Minisym-
posium Presentation Abstracts

Plenary Speakers: Eva Lee, Georgia Institute of Tech-
nology, USA; Jeffrey Linderoth, University of Wisconsin-
Madison, USA; Zhi-Quan (Tom) Luo, University of
Minnesota, USA, and Chinese University of Hong Kong,
Hong Kong; Ali Pinar, Sandia National Laboratories, USA;
James Renegar, Cornell University, USA; Katya Scheinberg,
Lehigh University, USA; Martin Wainwright, University of
California at Berkeley, USA.

More details are available on the conference website:
http://www.siam.org/meetings/opl7/index.php.

1.2 SAMSI Workshop on the Interface of Statis-
tics and Optimization (WISO)

This workshop, held in conjunction with SAMSI’s Program
on Optimization, will take place February 8-10, 2017.

Description: The integration and cross-fertilization be-
tween statistics and optimization is urgent and productive.
Traditionally, optimization has merely been used as a tool to
compute numerical solutions for statistical problems, while
optimization theory and algorithms have rarely supported
statistical techniques. This compartmental approach is prov-
ing to be non-optimal. More and more statistical tools are
being developed by borrowing strengths from optimization,
while optimization is looking to statistics for new insights,
speed and robustness.

This workshop will bring together researchers who are pi-
oneers in the synergy of statistics and optimization. It will
serve SAMSIs mission to forge a synthesis of the statistical
sciences and the applied mathematical sciences with disci-
plinary science to confront the very hardest and most im-
portant data- and model-driven scientific challenges. The

workshop will also address contemporary issues with poten-
tially significant impact in industrial applications.

Location: This workshop will be held at the Hamner Con-
ference Center in Research Triangle Park.

More  details  are  available on  the  con-
ference website: https://www.samsi.info/
programs-and-activities/research-workshops/
workshop-interface-statistics-optimization-wiso/
and by contacting the organizers (Xiaoming Huo, Dirk
Lorenz, Ekkehard Sachs, and Hua Zhou) and SAMSI
directorate liaison (Ilse Ipsen).

2 Book Announcements

2.1 Game Theory with Engineering Applica-
tions

By Dario Bauso

Publisher: SIAM

Series: Advances in Design and Control, Vol.
30

ISBN: 978-1-611974-27-0, xxviii + 292 pages
Published: 2016

http: //bookstore. siam. org/ dc30/

Game Theory

with Engineering Applications

Dario Bauso

ABOUT THE BOOK: Engineering systems are highly dis-
tributed collective systems—decisions, information, and ob-
jectives are distributed throughout—that have humans in the
loop, and thus decisions may be influenced by socioeconomic
factors. Engineering systems emphasize the potential of con-
trol and games beyond traditional applications. Game the-
ory can be used to design incentives to obtain socially de-
sirable behaviors on the part of the players, for example,
a change in the consumption patterns of the “prosumers”
(producers-consumers) or better redistribution of traffic.

This unique book addresses the foundations of game the-
ory, with an emphasis on the physical intuition behind the
concepts, an analysis of design techniques, and a discussion
of new trends in the study of cooperation and competition
in large complex distributed systems.

AUDIENCE: This book is intended for undergraduate and
graduate students and researchers in industrial, aeronauti-
cal, manufacturing, civil, mechanical, chemical, and electri-
cal engineering. It is also designed for social scientists in-
terested in quantitative methods for sociotechnical systems,
biologists working on adaptation mechanisms and evolution-
ary dynamics, and physicists working on collective systems
and synchronization phenomena.
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2.2 Minimum-Volume Ellipsoids:
Algorithms

Theory and

MiNIMuM-VOLUME
ELLIPSOIDS
“THEORY AND ALGO}

By Michael J. Todd

Publisher: SIAM

Series: MOS-SIAM Series on Optimization,
Vol. 23

ISBN: 978-1-611974-87-9, ziv + 149 pages
Published: July 2016

http: //bookstore. siam. org/MO23/

B
ABOUT THE BOOK: This book, the first on these topics,
addresses the problem of finding an ellipsoid to represent a
large set of points in high-dimensional space, which has ap-
plications in computational geometry, data representations,
and optimal design in statistics. The book covers the for-
mulation of this and related problems, theoretical properties
of their optimal solutions, and algorithms for their solution.
Due to the high dimensionality of these problems, first-order
methods that require minimal computational work at each
iteration are attractive. While algorithms of this kind have
been discovered and rediscovered over the past fifty years,
their computational complexities and convergence rates have
only recently been investigated. The optimization problems
in the book have the entries of a symmetric matrix as their
variables, so the author’s treatment also gives an introduc-
tion to recent work in matrix optimization.

This book provides historical perspective on the problems

studied by optimizers, statisticians, and geometric functional
analysts; demonstrates the huge computational savings pos-
sible by exploiting simple updates for the determinant and
the inverse after a rank-one update, and highlights the diffi-
culties in algorithms when related problems are studied that
do not allow simple updates at each iteration; and gives rig-
orous analyses of the proposed algorithms, MATLAB codes,
and computational results.
AUDIENCE: This book will be of interest to graduate stu-
dents and researchers in operations research, theoretical
statistics, data mining, complexity theory, computational ge-
ometry, and computational science.

2.3 Automatic Differentiation in MATLAB Us-
ing ADMAT with Applications

b

By Thomas F. Coleman & Wei Xu

B Publisher: SIAM

Series: Software, Environments, and Tools,
Vol. 27

ISBN: 978-1-611974-35-5, xii + 105 pages
Published: June 2016

= http: //bookstore. siam. orqg/SE27/

ic Differentiation

ABOUT THE BOOK: The calculation of partial derivatives is
a fundamental need in scientific computing. Automatic dif-
ferentiation (AD) can be applied straightforwardly to obtain
all necessary partial derivatives (usually first and, possibly,
second derivatives) regardless of a code’s complexity. How-
ever, the space and time efficiency of AD can be dramati-

cally improved—sometimes transforming a problem from in-
tractable to highly feasible—if inherent problem structure is
used to apply AD in a judicious manner.

Automatic Differentiation in MATLAB using ADMAT
with Applications discusses the efficient use of AD to solve

real problems, especially multidimensional zero-finding and
optimization, in the MATLAB environment. This book is
concerned with the determination of the first and second
derivatives in the context of solving scientific computing
problems with an emphasis on optimization and solutions
to nonlinear systems. The authors focus on the application
rather than the implementation of AD, solve real nonlinear
problems with high performance by exploiting the problem
structure in the application of AD, and provide many easy
to understand applications, examples, and MATLAB tem-
plates.

AUDIENCE: This book will prove useful to financial engi-
neers, quantitative analysts, and researchers working with
inverse problems, as well as to engineers and applied scien-
tists in other fields.

2.4 MM Optimization Algorithms

KENNETH LANGE
v H

By Kenneth Lange

Publisher: SIAM

ISBN: 978-1-611974-39-3, x + 2283 pages
Published: July 2016

,/';AM OpfmEanon http: //bookstore. siam. orqg/0T147/

*  Algorithms

ABOUT THE BOOK: MM Optimization Algorithms offers an
overview of the MM principle, a device for deriving opti-
mization algorithms satisfying the ascent or descent prop-
erty. These algorithms can separate the variables of a
problem, avoid large matrix inversions, linearize a problem,
restore symmetry, deal with equality and inequality con-
straints gracefully, and turn a nondifferentiable problem into
a smooth problem.

The author presents the first extended treatment of MM

algorithms, which are ideal for high-dimensional optimiza-
tion problems in data mining, imaging, and genomics; derives
numerous algorithms from a broad diversity of application
areas, with a particular emphasis on statistics, biology, and
data mining; and summarizes a large amount of literature
that has not reached book form before.
AUDIENCE: This book is intended for those interested in
high-dimensional optimization. Background material on con-
vexity and semidifferentiable functions is derived in a setting
congenial to graduate students.

3 Other Announcements

3.1 Howard Rosenbrock Prize 2015

The Howard Rosenbrock Prize is awarded each year for
the best paper in Optimization and Engineering (OPTE),
a Springer journal that promotes the advancement of op-
timization methods and the innovative application of opti-
mization in engineering. The prize is named after Howard
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Rosenbrock, a pioneer of modern control theory and practice
who embodied the bridging of the gap between optimization
and engineering that is OPTE’s raison d’étre.

The recipients for 2015 are Moritz Simon and Michael Ul-
brich of the Department of Mathematics, Technische Uni-
versitdt Miinchen. Their awarded article is entitled “Adjoint
based optimal control of partially miscible two-phase flow
in porous media with applications to CO5 sequestration in
underground reservoirs.” The formal announcement of the
prize is published in the latest issue of OPTE.

Congratulations to Moritz and Michael!
Miguel Anjos, Editor-in-Chief, Optimization and Engi-
neering, https://www.optejournal.com

3.2 Combinatorial Scientific Computing Best
Paper Prize

The 7th STAM Workshop on Combinatorial Scientific Com-
puting (CSC16) was held October 10-12 in Albuquerque,
New Mexico. A new feature of CSC16 was a peer-reviewed
proceedings published by SIAM. The inaugural CSC Best
Paper Prize was awarded to Fredrik Manne, Md. Naim,
Hakon Lerring (all from the University of Bergen, Norway)
and Mahantesh Halappanavar (Pacific Northwest National
Laboratory) for their paper “Stable marriages and greedy
matchings.”

This paper showed that recent approximation algorithms
for computing edge weighted matchings in graphs can be
viewed as variants of the Gale-Shapley and Wilson-McVitie
algorithms for the celebrated stable marriage problem. This
paper links work performed by two distinct communities,
leading to increased understanding and parallel algorithms.

This year’s prize committee consisted of Uwe Naumann,
Alex Pothen, and Sivan Toledo. Congratulations to Profes-
sor Manne and his coauthors.

3.3 2016 SIAM Fellows Announced

Each year, STAM designates as Fellows of the society those
who have made outstanding contributions to the fields of ap-
plied mathematics and computational science. This year, 30
members of the community were selected for this distinction.

These new Fellows include eight members of the STAG,
whose citations are included below. Full details on the
SIAM Fellow program can be found at http://www.siam.
org/prizes/fellows/index.php. Congratulations to all
the new Fellows!

Gang Bao

Zheijiang University

For significant and lasting contribu-
tions to inverse problems in wave phe-
nomena and electromagnetics applied to
optics.

Thomas F. Coleman

University of Waterloo

For contributions to large-scale, sparse
numerical optimization, financial opti-
mization, and leadership in mathemat-
ics education and engagement with in-
dustry.

Michael Hintermiiller

Weierstrass Institute for Applied Analysis
and Stochastics and Humboldt-Universitat zu
Berlin

For contributions to theoretical and nu-
merical optimization, and for their ap-
plication.

Andrew Knyazev

Mitsubishi Electric Research Laboratories
(MERL) and Professor Emeritus at University
of Colorado Denver

For contributions to computational
mathematics and development of nu-
merical methods for eigenvalue prob-
lems.

James G. Nagy

Emory University

For contributions to the computational
science of image reconstruction.

Cynthia A. Phillips

Sandia National Laboratories

For contributions to the theory and
applications of combinatorial optimiza-
tion.

David P. Williamson

Cornell University

For fundamental contributions to the
design and analysis of approximation
=N algorithms.
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Xunyu Zhou

Columbia University and University of Oxford
For accomplishments in stochastic op-
timization, financial mathematics, and
behavioral finance.

Chair’s Column

Welcome again to the latest issue of Views and News. It
has been an incredibly successful year for our SIAG and I'm
happy to report that our charter, which was up for renewal,
has been approved by the STAM Board of Trustees. In addi-
tion, over the last 12 months our membership has grown from
961 to 1,091. Other activities that our SIAG has engaged in
are organizing a STAG/OPT track of sessions at the 2016
SIAM Annual Meeting, July 11-15, Boston, Massachusetts
and a SIAM News article on Energy Optimization (Rain Is
Free, or Isn’t It?). I highly recommend reading it.

We’re hoping to keep the momentum going for the rest of
2016 and 2017. As you know, we are well on our way towards
our triennial conference, which will be held in Vancouver,
British Columbia on May 22-25, 2017. The conference is
shaping up nicely and I’ll report on further developments in
the next Views and News. In the meantime, I'm excited to
announce that the conference will feature two minitutorials
so you may want to check out those as well. The first is
on Stochastic Optimization for Machine Learning, organized
by Francis Bach and Mark Schmidt. The second will be
on Optimal Power Flow and is being organized by Alper
Atamtiirk and Daniel Bienstock.

I also wanted to send out a friendly reminder that SIAG
elections are just around the corner. We have a great slate of
candidates and I urge all members to vote. The new officers
will be announced in January. Please check your inbox for
more information and how to go about voting.

Amidst all the great news, I'm saddened to report that
we have recently lost some exceptional optimization re-
searchers this year: Jonathan Borwein, Roger Fletcher, and
Christodoulos Floudas. In addition to being outstanding re-
searchers all three were also wonderful people always willing
to help out others. We will miss them greatly.

As always, if you have any suggestions for activities that
this STAG can engage in to benefit its members, please feel
free to contact any of the officers. I wish you all a wonderful
rest of the year.

Juan Meza, STAG/OPT Chair

School of Natural Sciences, University of California,
Merced, Merced, CA 95343, USA, jcmeza@ucmerced.edu,
http://bit.ly /1G8HUxO

Comments from the
Editors

We thank the contributors to the 34th issue of STAM Ac-
tivity Group on Optimization’s newsletter and congratulate
the newly-elected STAM fellows and prize winners!

Given the overwhelming interest in all things machine
learning, Katya’s article is a particularly timely take on the
(forgive the pun) deep connections between optimization and
ML.

We are served well by looking to the past, and this issue’s
personal remembrances by Adrian, Sven, and Ruth provide
great insights into three luminaries of our field. We extend
our condolences to the family, friends, and colleagues of Jon
Borwein, Roger Fletcher, and Chris Floudas.

With election season in full swing in the U.S., it is inter-
esting to remember that news coverage was not always what
is currently broadcast: On Thanksgiving day in 1997, the
cable news network MSNBC (then only a year old) broad-
cast a “pi(e)” feature with Jon Borwein, Peter Borwein, and
Simon Plouffe from the campus of Simon Fraser University!
Other remembrances can be found at the memorial site for
Jon Borwein at http://jonborwein.org.

It is also worthwhile to share related activities happening
in other STAM activity groups. The STAG/CSE has recently
produced an extensive report on research and education in
computational science and engineering, a discipline that was
near and dear to Chris Floudas.

Many of you have written to opt for an electronic copy of
Views and News; for the others among you, please do not
hesitate to contact us to opt out of receiving physical copies.
We cannot help to notice that Roger Fletcher was a master of
minimizing paper: the two landmark papers on the DFP [59]
and Fletcher-Reeves [60] methods were a combined 12 (11 if
one allows for packing!) pages in length. His succinctness is
something for us to aspire to, even in the digital age.

We welcome your feedback, (e-)mailed directly to us or to
siagoptnews@lists.mcs.anl.gov. Suggestions for new is-
sues, comments, and papers are always welcome! Best wishes
for the new year, see you in 2017,

Stefan Wild, Editor

Mathematics and Computer Science Division, Argonne Na-
tional Laboratory, USA, wild@anl.gov, http://www.mcs.
anl.gov/~wild

Jennifer Erway, Editor

Department of Mathematics, Wake Forest University, USA,
erwayjbQwfu.edu, http://www.wfu.edu/~erwayjb
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