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1 Introduction
The proximal point method is a conceptually simple algo-
rithm for minimizing a function f on Rd. Given an iterate
xt, the method defines xt+1 to be any minimizer of the prox-
imal subproblem

argmin
x

{
f(x) + 1

2ν ‖x− xt‖
2
}
,

for an appropriately chosen parameter ν > 0. At first glance,
each proximal subproblem seems no easier than minimizing
f in the first place. On the contrary, the addition of the
quadratic penalty term often regularizes the proximal sub-
problems and makes them well conditioned. Case in point,
the subproblem may become convex despite f not being con-
vex; and even if f were convex, the subproblem has a larger
strong convexity parameter, thereby facilitating faster nu-
merical methods.

Despite the improved conditioning, each proximal sub-
problem still requires invoking an iterative solver. For this
reason, the proximal point method has predominantly been
thought of as a theoretical or conceptual algorithm, only
guiding algorithm design and analysis rather than being im-
plemented directly. One good example is the proximal bun-
dle method [43], which approximates each proximal subprob-
lem by a cutting-plane model. In the past few years, this
viewpoint has undergone a major revision. In a variety of
circumstances, the proximal point method (or a close vari-
ant) with a judicious choice of the control parameter ν > 0
and an appropriate iterative method for the subproblems can
lead to practical and theoretically sound numerical methods.
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In this article, I will briefly describe three recent examples
of this trend:

• a subgradient method for weakly convex expectation
minimization problems [24],

• the prox-linear algorithm for minimizing compositions of
convex functions and smooth maps [11,16,29,31,44,54],
and

• the Catalyst generic acceleration schema [45] for regu-
larized empirical risk minimization.

I will focus only on the proximal point method for min-
imizing functions, as outlined above. The proximal point
methodology applies much more broadly to monotone op-
erator inclusions; I refer the reader to the monograph of
Bauschke and Combette [7] or the seminal work of Rock-
afellar [61].

2 Notation
The following two constructions will play a basic role in the
article. For any closed function f on Rd, the Moreau envelope
and the proximal map are

fν(z) := inf
x

{
f(x) + 1

2ν ‖x− z‖
2
}
,

proxνf (z) := argmin
x

{
f(x) + 1

2ν ‖x− z‖
2
}
,

respectively. In this notation, the proximal point method is
simply the fixed-point recurrence on the proximal map:1

Step t : choose xt+1 ∈ proxνf (xt).

Clearly, to have any hope of solving the proximal subprob-
lems, one must ensure that they are convex. Consequently,
the class of weakly convex functions forms the natural setting
for the proximal point method.

Definition 1. A function f is called ρ-weakly convex if the
assignment x 7→ f(x) + ρ

2‖x‖
2 is a convex function.

For example, a C1-smooth function with ρ-Lipschitz gra-
dient is ρ-weakly convex, while a C2-smooth function f is
ρ-weakly convex precisely when the minimal eigenvalue of its
Hessian is uniformly bounded below by −ρ. In essence, weak
convexity precludes functions that have downward kinks. For
instance, f(x) := −‖x‖ is not weakly convex since no addi-
tion of a quadratic makes the resulting function convex.

Whenever f is ρ-weakly convex and the proximal param-
eter ν satisfies ν < ρ−1, each proximal subproblem is itself
convex and therefore globally tractable. Moreover, in this
setting, the Moreau envelope is C1-smooth with gradient

∇fν(x) = ν−1(x− proxνf (x)). (1)

Rearranging the gradient formula yields the useful interpre-
tation of the proximal point method as gradient descent on
the Moreau envelope

xt+1 = xt − ν∇fν(xt).

1In order to ensure that proxνf (·) is nonempty, it suffices to assume
that f is bounded from below.

In summary, the Moreau envelope fν serves as a C1-
smooth approximation of f for all small ν. Moreover, the
two conditions

‖∇fν(xt)‖ < ε

and
‖ν−1(xt − xt+1)‖ < ε,

are equivalent for the proximal point sequence {xt}. Hence,
the step size ‖xt−xt+1‖ of the proximal point method serves
as a convenient termination criterion.

Examples of weakly convex functions

Weakly convex functions are widespread in applications and
are typically easy to recognize. One common source of
weakly convex functions is the composite problem class:

min
x

F (x) := g(x) + h(c(x)), (2)

where g : Rd → R ∪ {+∞} is a closed convex function,
h : Rm → R is convex and L-Lipschitz, and c : Rd → Rm
is a C1-smooth map with β-Lipschitz gradient. An easy ar-
gument shows that the composite function F is Lβ-weakly
convex. This is a worst-case estimate. In concrete circum-
stances, the composite function F may have a much more
favorable weak convexity constant. This is the case for in-
stance in phase retrieval [32, Section 3.2]; see Example 2.4
for the problem definition.

Example 2.1 (Additive composite). The most prevalent ex-
ample is additive composite minimization. In this case, the
map c maps to the real line, and h is the identity function:

min
x

c(x) + g(x). (3)

Such problems appear often in statistical learning and imag-
ing. Various specialized algorithms are available; see, for
example, [8] or [55].

Example 2.2 (Nonlinear least squares). The composite
problem class also captures nonlinear least-squares problems
with bound constraints:

min
x
‖c(x)‖2 subject to li ≤ xi ≤ ui ∀i.

Such problems pervade engineering and scientific applica-
tions.

Example 2.3 (Exact penalty formulations). Consider a
nonlinear optimization problem:

min
x
{f(x) : G(x) ∈ K},

where f and G are smooth maps and K is a closed convex
cone. An accompanying penalty formulation—ubiquitous in
nonlinear optimization—takes the form

min
x

f(x) + λ · distK(G(x)),

where distK(·) is the distance to K in some norm. Histori-
cally, exact penalty formulations served as the early motiva-
tion for the class (2).
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Example 2.4 (Robust phase retrieval). Phase retrieval is a
common computational problem, with applications in diverse
areas such as imaging, X-ray crystallography, and speech pro-
cessing. For simplicity, I will focus on the version of the prob-
lem over the reals. The (real-valued) phase retrieval problem
seeks to determine a point x satisfying the magnitude con-
ditions,

|〈ai, x〉| ≈ bi for i = 1, . . . ,m,

where ai ∈ Rd and bi ∈ R are given. Whenever gross outliers
occur in the measurements bi, the following robust formula-
tion of the problem is appealing [23,32,34]:

min
x

1
m

m∑
i=1

|〈ai, x〉2 − b2i |.

Clearly, this is an instance of (2). For some recent perspec-
tives on phase retrieval, see the survey [46]. Numerous other
nonconvex approaches to phase retrieval exist, which rely on
different problem formulations; for example, [13, 19,66].

Example 2.5 (Robust PCA). In robust principal compo-
nent analysis, one seeks to identify sparse corruptions of a
low-rank matrix [12, 18]. One typical example is image de-
convolution, where the low-rank structure models the back-
ground of an image while the sparse corruption models the
foreground. Formally, given a m × n matrix M , the goal is
to find a decomposition M = L+S, where L is low rank and
S is sparse. A common relaxation of the problem is

min
U∈Rm×r,V ∈Rn×r

‖UV T −M‖1,

where r is the target rank. As is common, the entrywise `1
norm encourages a sparse residual UV T −M .

Example 2.6 (Censored Z2 synchronization). A synchro-
nization problem over a graph is to estimate group elements
g1, . . . , gn from pairwise products gig

−1
j over a set of edges

ij ∈ E. For a list of applications of such problems see
c [1, 5, 65] and references therein. A simple instance is Z2

synchronization, corresponding to the group on two elements
{−1,+1}. The popular problem of detecting communities in
a network, within the binary stochastic block model, can be
modeled by using Z2 synchronization.

Formally, given a partially observed matrix M , the goal is
to recover a vector θ ∈ {±1}d, satisfying Mij ≈ θiθj for all
ij ∈ E. When the entries of M are corrupted by adversarial
sign flips, one can postulate the following formulation:

min
θ∈Rd

‖PE(θθT −M)‖1,

where the operator PE records the entries indexed by the
edge set E. Clearly, this is again an instance of (2).

3 Proximally guided subgradient method

As the first example of contemporary applications of the
proximal point method, consider the problem of minimizing

the expectation:2

min
x∈Rd

F (x) = Eζf(x, ζ).

Here, ζ is a random variable, and the only access to F is by
sampling ζ. It is difficult to overstate the importance of this
problem class in large-scale optimization; see, for example,
[6, 9].

When the problem is convex, the stochastic subgradient
method [49, 58, 60] has strong theoretical guarantees and is
often the method of choice. In contrast, when applied to non-
smooth and nonconvex problems, the behavior of the method
is poorly understood. The recent paper [24] shows how to use
the proximal point method to guide the subgradient iterates
in this broader setting, with rigorous guarantees.

Henceforth, assume that the function x 7→ f(x, ζ) is ρ-
weakly convex and L-Lipschitz for each ζ. Davis and Grim-
mer [24] proposed the scheme outlined in Algorithm 1.

Algorithm 1: Proximally guided stochastic subgra-
dient method

Data: x0 ∈ Rd, {jt} ⊂ N, {αj} ⊂ R++

for t=0,. . . ,T do
Set y0 = xt;
for j = 0, . . . , jt − 2 do

Sample ζ and choose

vj ∈ ∂
(
f(·, ζ) + ρ‖ · −xt‖2

)
(yj);

yj+1 = yj − αjvj
end

xt+1 = 1
jt

∑jt−1
j=0 yj

end

The method proceeds by applying a proximal point
method with each subproblem approximately solved by a
stochastic subgradient method. The intuition is that each
proximal subproblem is ρ/2-strongly convex and therefore
according to well-known results (e.g., [38, 40, 41, 59]), the
stochastic subgradient method should converge at the rate
O( 1

T ) on the subproblem, in expectation. This intuition
is not quite correct because the objective function of the
subproblem is not globally Lipschitz—a key assumption for
the O( 1

T ) rate. Nonetheless, the authors show that warm-
starting the subgradient method for each proximal subprob-
lem with the current proximal iterate corrects this issue,
yielding a favorable guarantee [24, Theorem 1].

To describe the rate of convergence, set jt = t +
d648 log(648)e and αj = 2

ρ(j+49) in Algorithm 1. Then the

scheme will generate an iterate x satisfying

Eζ [‖∇F2ρ(x)‖2] ≤ ε

2For simplicity of the exposition, the minimization problem is un-
constrained. Simple constraints can be accommodated by using a pro-
jection operation.
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after at most

O

(
ρ2(F (x0)−minF )2

ε2
+
L4 log4(ε−1)

ε2

)
(4)

subgradient evaluations. This rate agrees with analogous
guarantees for stochastic gradient methods for smooth non-
convex functions [36]. Note that convex constraints on x
can be easily incorporated into Algorithm 1 by introducing
a nearest-point projection in the definition of yj+1.

An interesting and long-standing open question remained:
what is the convergence rate of the basic stochastic subgradi-
ent method applied directly on the function F (Algorithm 2)?

Algorithm 2: Direct stochastic subgradient method

Data: x0 ∈ Rd, γ > 0
for t=0,. . . ,T do

Sample ζ and choose vt ∈ ∂f(·, ζ)(xt);
xt+1 = xt − γ√

T+1
vt

end

The recent work [22] provided a definitive answer, estab-
lishing the following complexity guarantee for Algorithm 2:

O

(
(F (x0)−minF )2

γ2ε2
+
ρ2γ2L4

ε2

)
. (5)

Here, γ > 0 is a tuning parameter; for example, setting
γ := 1/ρ yields the same estimate as (4) up to log factors.
The complexity guarantee (5) is somewhat surprising, since
neither the Moreau envelope nor the proximal map appear
in the definition of Algorithm 2. Nonetheless, the conver-
gence analysis fundamentally relies on using the Moreau en-
velope as the potential function to monitor along the iterate
sequence. In the deterministic setting, one noteworthy ad-
vantage of Algorithm 1 is an appealing stopping criterion
based on step-size, absent from Algorithm 2.

4 Prox-linear algorithm
For well-structured weakly convex problems, one can hope
for faster numerical methods than the subgradient scheme.
In this section, I will focus on the composite problem class
(2). To simplify the exposition, I will assume L = 1, which
can always be arranged by rescaling.

Since composite functions are weakly convex, one could
apply the proximal point method directly, while setting the
parameter ν ≤ β−1. Even though the proximal subprob-
lems are strongly convex, they are not in a form that is most
amenable to convex optimization techniques. Indeed, most
convex optimization algorithms are designed for minimizing
a sum of a convex function and a composition of a convex
function with a linear map. This observation suggests in-
troducing the following modification to the proximal point
algorithm. Given a current iterate xt, the prox-linear method
sets

xt+1 = argmin
x
{F (x;xt) + β

2 ‖x− xt‖
2},

where F (x; y) is the local convex model

F (x; y) := g(x) + h (c(y) +∇c(y)(x− y)) .

In other words, each proximal subproblem is approximated
by linearizing the smooth map c at the current iterate xt.

The main advantage is that each subproblem is now a
sum of a strongly convex function and a composition of a
Lipschitz convex function with a linear map. A variety of
methods utilizing this structure can be formally applied, for
example, smoothing [53], saddle-point [17, 48], and interior-
point algorithms [51,68]. Which of these methods is practical
depends on the specifics of the problem, such as the size and
the cost of matrix-vector multiplications.

Note that in the simplest setting of additive composite
problems (Example 2.1), the prox-linear method reduces to
the popular proximal gradient algorithm or ISTA [8]. For
nonlinear least squares, the prox-linear method is a close
variant of Gauss-Newton.

Recall that the step size of the proximal point method
provides a convenient stopping criterion, since it directly
relates to the gradient of the Moreau envelope—a smooth
approximation of the objective function. Is there such an
interpretation for the prox-linear method? This question is
central because termination criteria are used not only to stop
the method but also to judge its efficiency and to compare
against competing methods.

The answer is yes. Even though one cannot evaluate the
gradient ‖∇F 1

2β
‖ directly, the scaled step-size of the prox-

linear method

G(x) := β(xt+1 − xt)

is a good surrogate [31, Theorem 4.5]:

1
4‖∇F 1

2β
(x)‖ ≤ ‖G(x)‖ ≤ 3‖∇F 1

2β
(x)‖.

In particular, the prox-linear method will find a point x sat-

isfying ‖∇F 1
2β

(x)‖2 ≤ ε after at most O
(
β(F (x0)−inf F )

ε

)
it-

erations. In the simplest setting when g = 0 and h(t) = t,
this rate reduces to the well-known convergence guarantee of
gradient descent, which is black-box optimal for C1-smooth
nonconvex optimization [15].

A number of improvements to the basic prox-linear method
were recently proposed. Cartis et al. [16] discuss trust-region
variants and their complexity guarantees. Duchi and Ruan
[33] propose a stochastic extension of the scheme and prove
almost sure convergence, while the convergence rate for the
stochastic prox-linear method is proved in [21]. In [31], the
authors discuss overall complexity guarantees of the prox-
linear method when the convex subproblems can be solved
only by first-order methods, and propose an inertial variant
of the scheme whose convergence guarantees automatically
adapt to the near-convexity of the problem.

Local rapid convergence

Under typical regularity conditions, the prox-linear method
exhibits the same types of rapid convergence guarantees as
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the proximal point method. I will illustrate with two in-
tuitive and widely used regularity conditions, yielding local
linear and quadratic convergence, respectively.

Definition 2 ( [57]). A local minimizer x̄ of F is α-tilt stable
if there exists r > 0 such that the solution map

M : v 7→ argmin
x∈Br(x̄)

{F (x)− 〈v, x〉}

is 1/α-Lipschitz around 0 with M(0) = x̄.

This condition might seem unfamiliar to convex optimiza-
tion specialists. Although not obvious, tilt stability is equiv-
alent to a uniform quadratic growth property and a subtle
localization of strong convexity of F . See [28] or [30] for
more details on these equivalences. Under the tilt stabil-
ity assumption, the prox-linear method initialized sufficiently
close to x̄ produces iterates that converge at a linear rate of
1− α/β.

The second regularity condition models sharp growth of
the function around the minimizer. Let S be the set of all
stationary points of F , meaning x lies in S if and only if the
directional derivative F ′(x; v) is nonnegative in every direc-
tion v ∈ Rd.

Definition 3 ( [10]). A local minimizer x̄ of F is sharp if
there exist α > 0 and a neighborhood X of x̄ such that

F (x) ≥ F (projS(x)) + c · dist(x, S) ∀x ∈ X .

Under the sharpness condition, the prox-linear method ini-
tialized sufficiently close to x̄ produces iterates that converge
quadratically.

For well-structured problems, one can hope to justify the
two regularity conditions under statistical assumptions. The
work of Duchi and Ruan on the phase retrieval problem [32]
is an interesting recent example. Under mild statistical as-
sumptions on the data-generating mechanism, sharpness is
ensured with high probability. Therefore the prox-linear
method (and even a subgradient method [23]) converges
rapidly, when initialized within a constant relative distance
of an optimal solution.

5 Catalyst acceleration
The final example concerns inertial acceleration in convex
optimization. Setting the groundwork, consider a µ-strongly
convex function f with a β-Lipschitz gradient map x 7→
∇f(x). Classically, gradient descent will find a point x sat-
isfying f(x)−min f < ε after at most

O

(
β

µ
ln(1/ε)

)
iterations. Accelerated gradient methods, beginning with
Nesterov [52], equip the gradient descent method with an
inertial correction. Such methods have the much lower com-
plexity guarantee

O

(√
β

µ
ln(1/ε)

)
,

which is optimal within the first-order oracle model of com-
putation [50].

One naturally may ask which other methods, aside from
gradient descent, can be “accelerated.” For example, one
may wish to accelerate coordinate descent or so-called
variance-reduced methods for finite-sum problems; I will
comment on the latter problem class shortly.

One appealing strategy relies on the proximal point
method. Güler in [37] showed that the proximal point
method itself can be equipped with inertial steps leading
to improved convergence guarantees. Building on this work,
Lin, Mairal, and Harchaoui [45] explained how to derive the
total complexity guarantees for an inexact accelerated prox-
imal point method that take into account the cost of ap-
plying an arbitrary linearly convergent algorithm M to the
subproblems. Their Catalyst acceleration framework is sum-
marized in Algorithm 3.

Algorithm 3: Catalyst acceleration

Data: x0 ∈ Rd, κ > 0, algorithm M
Set q = µ/(µ+ κ), α0 =

√
q, and y0 = x0;

for t=1,. . . ,T do
Use M to approximately solve:

xt ≈ argmin
x∈Rd

{
F (x) +

κ

2
‖x− yt−1‖2

}
. (6)

Compute αt ∈ (0, 1) from the equation

α2
t = (1− αt)α2

t−1 + qαt.

Compute:

βt =
αt−1(1− αt−1)

α2
t−1 + αt

,

yt = xt + βt(xt − xt−1).

end

To state the guarantees of this method, suppose that M
converges on the proximal subproblem in function value at
a linear rate 1 − τ ∈ (0, 1). Then a simple termination pol-
icy on the subproblems (6) yields an algorithm with overall
complexity

Õ

(√
µ+ κ

τ
√
µ

ln(1/ε)

)
. (7)

That is, the expression (7) describes the maximal number of
iterations of M used by Algorithm 3 until it finds a point
x satisfying f(x) − inf f ≤ ε. Typically τ depends on κ;
therefore the best choice of κ is the one that minimizes the
ratio

√
µ+κ
τ
√
µ .

The main motivation for the Catalyst framework, and its
most potent application, is the regularized empirical risk
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minimization (ERM) problem:

min
x∈Rd

f(x) :=
1

m

m∑
i=1

fi(x) + g(x).

Such large-finite sum problems are ubiquitous in machine
learning and high-dimensional statistics, where each function
fi typically models a misfit between predicted and observed
data, while g promotes some low-dimensional structure on
x, such as sparsity or low rank.

Assume that f is µ-strongly convex and each individual
fi is C1-smooth with β-Lipschitz gradient. Since m is as-
sumed to be huge, the complexity of numerical methods is
best measured in terms of the total number of individual gra-
dient evaluations ∇fi. In particular, fast gradient methods
have the worst-case complexity,

O

(
m

√
β

µ
ln(1/ε)

)
,

since each iteration requires evaluation of all the individual
gradients {∇fi(x)}mi=1. Variance-reduced algorithms, such
as SAG [62], SAGA [26], SDCA [63], SMART [20], SVRG
[39, 69], FINITO [27], and MISO [45, 47], aim to improve
the dependence on m. In their raw form, all these methods
exhibit a similar complexity,

O

((
m+

β

µ

)
ln(1/ε)

)
,

in expectation, and differ only in storage requirements and
in whether one needs to know explicitly the strong convexity
constant.

A long-standing open question was to determine whether
the dependence on β/µ can be improved. This is not possible
in full generality, and instead one should expect a rate of the
form

O

((
m+

√
m
β

µ

)
ln(1/ε)

)
. (8)

Indeed, such a rate would be optimal in certain regimes [2,
4, 42, 67]. Note that the complexity (8) is beneficial only in
the setting m < β/µ.

Early examples for specific algorithms are the accelerated
SDCA [64], APPA [35], and RPDG [42].3 The accelerated
SDCA and APPA, in particular, use a specialized proximal
point construction.4 Catalyst generic acceleration allows all
of the variance-reduced methods above to be accelerated in
a single conceptually transparent framework. Note that the
first direct accelerated variance-reduced methods for ERM
problems were recently proposed in [3, 25].

In contrast to the convex setting, the role of inertia for
nonconvex problems is not nearly as well understood. In par-
ticular, gradient descent is black-box optimal for C1-smooth
nonconvex minimization [15], and therefore inertia cannot

3Here, I am ignoring logarithmic terms in the convergence rate.
4The accelerated SDCA was the motivation for the Catalyst frame-

work, while APPA appeared concurrently with Catalyst.

help in the worst case. On the other hand, the recent pa-
per [14] presents a first-order method for minimizing C2 and
C3 smooth functions that is provably faster than gradient de-
scent. At its core, the algorithm also combines inertia with
the proximal point method. For a partial extension of the
Catalyst framework to weakly convex problems, see [56].

6 Conclusion

The proximal point method has long been ingrained in the
foundations of optimization. Recent progress in large-scale
computing has shown that the proximal point method not
only is conceptual but can guide methodology. Although di-
rect methods are usually preferable, proximally guided algo-
rithms can be equally effective and often lead to more easily
interpretable numerical methods. In this article, I outlined
three examples of this viewpoint, where the proximal point
method guides both the design and the analysis of numerical
methods.
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Bulletin

1 Event Announcements

1.1 2018 DIMACS/TRIPODS/MOPTA Con-
ference

This year the annual MOPTA conference will be combined
with an NSF-TRIPODS sponsored three day summer school
for doctoral students and the NSF-DIMACS sponsored work-
shop on Optimization in Machine Learning which is a part of
the DIMACS/Simons Collaboration on Bridging Continuous
and Discrete Optimization.

The summer school will be held during the three days pre-
ceding the conference and is designed for doctoral students
interested in improving their theoretical and practical skills
related to optimization approaches in machine learning. The
DIMACS sponsored workshop will bring together invited lec-
tures by top experts in the field as well as contributed poster
presentations.

The MOPTA part of the conference this year will include
a variety on exciting new developments from different opti-
mization areas with a special focus on applications in energy.
It will aim to bring together researchers from both theoret-
ical and applied communities who do not usually have the
chance to interact in the framework of a medium-scale event.

Plenary speakers for MOPTA:
Daniel Bienstock (Columbia), Marija Ilic (MIT), Andrea
Lodi (UMontreal), David Morton (Northwestern).
Plenary speakers for DIMACS/TRIPODS:
Peter Bartlett (Berkeley), John Duchi (Stanford), Suvrit
Sra (MIT), Kilian Weinberger (Cornell), Stephen Wright
(Wisconsin).

More details are available on the conference website:
http://coral.ie.lehigh.edu/~mopta/.

1.2 MINLP summer school at Trier University

The research training group Algorithmic Optimization
(ALOP) at Trier University, Germany, organizes a summer
school on “Mixed-Integer Nonlinear Programming” from Au-
gust 13-16, 2018 (https://alop.uni-trier.de/MINLP/).

The lectures will be given by: Oliver Bastert & Zsolt
Csizmadia (FICO, Xpress Optimization), Christoph Buch-
heim (Technical University of Dortmund), Sven Leyffer (Ar-
gonne National Laboratory), and Jeff Linderoth (University
of Wisconsin-Madison).

MINLP combines the complexity of Integer Programming
with the challenges of Nonlinear Optimization. The summer
school aims at giving an overview of the many different as-
pects of this exciting field of mathematical optimization for
MSc and PhD students in mathematics, computer science
and related fields.

ALOP is accepting applications for travel funding for stu-
dents attending the summer school. The travel support ap-
plication deadline is May 30, 2018.

1.3 2019 SIAM Conference on Computational
Science and Engineering

The SIAM Conference on Computational Science and En-
gineering (CSE19) seeks to enable in-depth technical discus-
sions on a wide variety of major computational efforts on
large-scale problems in science and engineering, foster the

http://coral.ie.lehigh.edu/~mopta/
https://alop.uni-trier.de/MINLP/
http://www.siam.org/meetings/cse19/submissions.php
http://www.siam.org/meetings/cse19/submissions.php
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interdisciplinary culture required to meet these large-scale
challenges, and promote the training of the next generation
of computational scientists.

Themes for this conference are as follows:
• Computational science and machine learning
• Statistical modeling, methods, and computation
• Multiscale, multiphysics, and multilevel methods
• High performance software: packages and design
• Algorithms at extreme scales
• Tensor Computations
• High-order methods, novel discretizations, and scalable

solvers
• Data science, analytics, and visualization
• Applications in science, engineering, and industry
• Biological and biomedical computations
• Scientific simulation and uncertainty
• Numerical optimization: methods and applications
• Reduced order modeling
• Emerging trends in CS&E education and training

Deadlines (Midnight Eastern Time)
July 25: Minisymposium Proposal Submissions
August 22: Contributed Lecture, Poster, and Minisympo-
sium Presentation Abstracts

More details are available on the conference website:
http://www.siam.org/meetings/cse19/.

2 Book Announcements

2.1 Fundamentals of Numerical Computation

By Tobin A. Driscoll and Richard J.
Braun
Publisher: SIAM

ISBN: 978-1-611975-07-9, xxx + 553 pages

Published: 2017

http: // bookstore. siam. org/ ot154/

About the book: Fundamentals of Numerical Compu-
tation is an advanced undergraduate-level introduction to
the mathematics and use of algorithms for the fundamen-
tal problems of numerical computation: linear algebra, find-
ing roots, approximating data and functions, and solving
differential equations. The book is organized with simpler
methods in the first half and more advanced methods in
the second half, allowing use for either a single course or
a sequence of two courses. The authors take readers from
basic to advanced methods, illustrating them with over 200
self-contained MATLAB functions and examples designed for
those with no prior MATLAB experience. Although the text
provides many examples, exercises, and illustrations, the aim
of the authors is not to provide a cookbook per se, but rather
an exploration of the principles of cooking.

Professors Driscoll and Braun have developed an online
resource that includes well-tested materials related to every

chapter. Among these materials are lecture-related slides
and videos, ideas for student projects, laboratory exercises,
computational examples and scripts, and all the functions
presented in the book.

Audience: Fundamentals of Numerical Computation is in-
tended for advanced undergraduates in math, applied math,
engineering, or science disciplines, as well as for researchers
and professionals looking for an introduction to a subject
they missed or overlooked in their education.

2.2 Abstract Dynamic Programming, 2nd Ed.

By Dimitri P. Bertsekas
Publisher: Athena Scientific

ISBN: 978-1-886529-46-5, 360 pages

Published: February 2018

http: // www. athenasc. com/ abstractdp.

html

About the book: The book provides a synthesis of
old research on the foundations of dynamic program-
ming, the modern theory of approximate dynamic program-
ming/reinforcement learning, and new research on semicon-
tractive models, a broad generalization of shortest path-type
problems.

It aims at a unified and economical development of the
core theory and algorithms of total cost sequential decision
problems, based on the strong connections of the subject
with fixed point theory. The analysis focuses on the abstract
mapping that underlies dynamic programming and defines
the mathematical character of the associated problem. The
discussion centers on two fundamental properties that this
mapping may have: monotonicity and (weighted sup-norm)
contraction. It turns out that the nature of the analytical
and algorithmic DP theory is determined primarily by the
presence or absence of these two properties, and the rest of
the problem’s structure is largely inconsequential. New re-
search is focused on two areas: 1) The ramifications of these
properties in the context of algorithms for approximate dy-
namic programming, and 2) The new class of semicontractive
models, exemplified by shortest path problems, where some
but not all policies are contractive/terminating.

The new edition aims primarily to amplify the presentation
of the semicontractive models of Chapter 3 and Chapter 4 of
the first (2013) edition, and to supplement it with a broad
spectrum of research results that I obtained and published in
journals and reports since the first edition was written. As a
result, the size of this material more than doubled, and the
size of the book increased by nearly 40.

http://www.siam.org/meetings/cse19/
http://bookstore.siam.org/ot154/
http://www.athenasc.com/abstractdp.html
http://www.athenasc.com/abstractdp.html
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2.3 Deterministic Global Optimization: An In-
troduction to the Diagonal Approach

By Yaroslav D. Sergeyev and Dmitri
E. Kvasov
Publisher: Springer-Verlag New York

Series: Springer Briefs in Optimization

ISBN: 978-1-4939-7197-8, x + 136 pages

Published: 2017

http: // www. springer. com/ us/ book/

9781493971978

About the book: This book begins with a concentrated in-
troduction into deterministic global optimization and moves
forward to present new original results from the authors who
are well known experts in the field. Multiextremal continu-
ous problems that have an unknown structure with Lipschitz
objective functions and functions having the first Lipschitz
derivatives defined over hyperintervals are studied. A class
of algorithms using several Lipschitz constants is introduced
which has its origins in the DIRECT (DIviding RECTangles)
method. This new class is based on an efficient strategy that
is applied for the search domain partitioning. In addition
a survey on derivative free methods and methods using the
first derivatives is given for both one- dimensional and multi-
dimensional cases. Non-smooth and smooth minorants and
acceleration techniques that can speed up several classes of
global optimization methods with examples of applications
and problems arising in numerical testing of global optimiza-
tion algorithms are discussed. Theoretical considerations are
illustrated through engineering applications. Extensive nu-
merical testing of algorithms described in this book stretches
the likelihood of establishing a link between mathematicians
and practitioners. The authors conclude by describing appli-
cations and a generator of random classes of test functions
with known local and global minima that is used in more
than 40 countries of the world.
Audience: This book serves as a starting point for students,
researchers, engineers, and other professionals in operations
research, management science, computer science, engineer-
ing, economics, environmental sciences, industrial and ap-
plied mathematics to obtain an overview of deterministic
global optimization.

3 Other Announcements

3.1 2018 SIAM Fellows Announced

Each year, SIAM designates as Fellows of the society those
who have made outstanding contributions to the fields of ap-
plied mathematics and computational science. This year, 28
members of the community were selected for this distinction.

These new Fellows include five members of the
SIAG, whose citations are included below. Full de-
tails on the SIAM Fellow program can be found at
http://www.siam.org/prizes/fellows/index.php. Con-
gratulations to all the new Fellows!

Helen Moore
AstraZeneca

For impactful industrial
application of mathemat-
ical modeling in oncology,
immunology, and virology.
For mentoring, teaching,
and leadership.

Pablo A. Parrilo
Massachusetts Institute of Tech-

nology

For foundational contribu-
tions to algebraic methods
in optimization and engi-
neering.

Tamás Terlaky
Lehigh University For funda-
mental and sustained con-
tributions to the theory and
practice of optimization,
and for exemplary service
to the optimization commu-
nity.

Kim-Chuan Toh
National University of Singa-

pore

For his contributions to
the development of algo-
rithms and software for
semidefinite programming
and, more generally, conic
programming.

Homer F. Walker
Worcester Polytechnic Institute

For contributions to the-
ory and software of iter-
ative methods for nonlin-
ear systems and optimiza-
tion, as well as application
of these methods to scien-
tific simulations.

http://www.springer.com/us/book/9781493971978
http://www.springer.com/us/book/9781493971978
http://fellows.siam.org/index.php?sort=year&value=2018
http://fellows.siam.org/index.php?sort=year&value=2018
http://www.siam.org/prizes/fellows/index.php
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3.2 MPC “Best Paper of the Year” 2017

Congratulations to Diego Pecin, Artur Pessoa, Marcus Poggi,
and Eduardo Uchoa for winning “Best Paper of the Year”
for 2017 from Mathematical Programming Computation
(MPC). Their paper entitled “Improved branch-cut-and-
price for capacitated vehicle routing” (Mathematical Pro-
gramming Computation, Volume 9, Issue 1, pp. 61–100,
March 2017) was chosen from among all papers that were
in print in MPC in 2017. This is the inaugural prize for
MPC’s best paper of the year.

3.3 James H. Wilkinson Prize for Numerical
Software - Call for Entries

Entries for the James H. Wilkinson Prize for Numerical Soft-
ware are currently begin accepted. The prize is awarded
every four years to the authors of an outstanding piece of
numerical software. The prize is awarded for an entry that
best addresses all phases of the preparation of high-quality
numerical software. It is intended to recognize innovative
software in scientific computing and to encourage researchers
in the earlier stages of their career.

SIAM will award the Wilkinson Prize for Numerical
Software at the SIAM Conference on Computational Sci-
ence and Engineering (CSE19). The award will consist
of $3,000 and a plaque. As part of the award, the recipi-
ent(s) will be expected to present a lecture at the conference.

Eligibility Criteria: Selection will be based on: clarity
of the software implementation and documentation, im-
portance of the application(s) addressed by the software;
portability, reliability, efficiency, and usability of the soft-
ware implementation; clarity and depth of analysis of the
algorithms and the software in the accompanying paper;
and quality of the test software.

Candidates must have worked in mathematics or science
for at most 12 years (full time equivalent) after receiving
their PhD as of January 1 of the award year, allowing
for breaks in continuity. The prize committee can make
exceptions, if in their opinion the candidate is at an
equivalent stage in their career. For the 2019 award, a
candidate must have received their PhD no earlier than
January 1, 2007. The entry deadline is June 1, 2018.
Submission instructions can be found at http://www.siam.
org/prizes/nominations/nom_wilkinson_ns.php.

Selection Committee: Jorge Moré (Chair), Argonne
National Laboratory; Sven Hammarling, Numerical Algo-
rithms Group Ltd and University of Manchester; Michael
Heroux, Sandia National Laboratories; Randall J. LeVeque,
University of Washington; Katherine Yelick, Lawrence
Berkeley National Laboratory

Chair’s Column
The SIAG/OPT leadership worked on a few important

projects. SIAG/OPT was asked to organize a series of fea-
tured minisymposia for the SIAM Annual Meeting held in

Portland, OR, July 9–13. Naturally, Michael Friedlander,
our program director, took the lead of this activity. The
SIAM Annual meeting includes featured presentations highly
relevant to optimization: a plenary talk on Algebraic Vision
by Rekha R. Thomas (U. Washington), the John von Neu-
mann Lecture by Charles F. Van Loan, (Cornell U.), and
the AWM-SIAM Sonia Kovalevsky Lecture by Eva Tardos
(Cornell U.).

The Annual Meeting will also include the induction cer-
emony of the 2018 class of SIAM Fellows, which includes
SIAG/OPT members Helen Moore, Pablo A. Parrilo, Tamás
Terlaky, Kim-Chuan Toh, and Homer F. Walker. My sincere
congratulations to all Fellows! It is my great honor to join
such a distinguished club of colleagues.

Regarding the SIAM Conference on Optimization (OP20),
the contract between SIAM and the local organizers is signed,
so all is set for a great conference. In March, I visited Hong
Kong Polytechnic and the conference facilities, and I also
met with the Local Organizing Committee Chair Xiao-jun
Chen and Organizing Committee Co-Chair Defeng Sun. I
am pleased to report that Xiao-jun secured superb conference
facilities. With the exception of the opening ceremony, all
sessions will be in a modern building spread only between
two levels with easy escalator and stair access. The longest
walking distance between two session rooms is less than 3
minutes. There are large lecture theaters for plenary and
semi-plenary lectures, as well as an ample supply of smaller
breakout rooms. The opening plenary will be in a beautiful
and large theater, about 5 minutes walking distance from the
central conference place. Hong Kong is a vibrant, wonderful,
and multicultural city that offers a wide variety of hotels
nearby at various price levels. With Defeng we finalized the
OP20’s Organizing Committee. Stay tuned for more about
the Organizing Committee’s activities in the next newsletter.

Xiao-jun Chen, Tamás Terlaky, and Defeng Sun surveying
the facilities for the OP20 meeting in Hong Kong.

With the SIAG/OPT leadership team, we have developed
a proposal to establish an Early Career prize. We have re-
peatedly discussed details of the proposal with SIAM’s ma-
jor award committee to ensure that the SIAM Optimization

http://www.siam.org/prizes/nominations/nom_wilkinson_ns.php
http://www.siam.org/prizes/nominations/nom_wilkinson_ns.php
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Early Career prize is consistent with SIAM’s rules and anal-
ogous prizes of other activity groups, and in the same time
serves our activity group best. We certainly will present the
inaugural Early Career Prize in Hong Kong at OP20; stay
tuned for a call for nominations.

Finally, I wish all of you a wonderful and productive sum-
mer! Looking forward to see many of you in Portland at the
Annual Meeting.

Tamás Terlaky, SIAG/OPT Chair
Department of Industrial and Systems Engineering, P.C.
Rossin College of Engineering and Applied Science, Lehigh
University, Bethlehem, PA 18015-1582, USA,
terlaky@lehigh.edu, http://www.lehigh.edu/~tat208

Comments from the
Editors

Electronic preprint services (in particular those spanning
institutions) continue to see remarkable rises in submissions.
As of April, the editors’ preference for optimization-centric
preprints, Optimization Online (OO) has seen over 6,300
submissions. Submissions to the more general-purpose arXiv
exceeded 120,000 per year in 2017. ArXiv submissions in
the subject areas of mathematics and computer science now
make up half of all submissions; see Fig. A.

Fig. A: Fraction of arXiv submissions by subject.

We see this firsthand in Views and News. In the ten-year
period between 2007 and 2016, 1.2% (7 out of 570) of the
citations in Views and News pointed to an arXiv preprint.
The three issues since then clock in at a rate of 10.5% (26
out of 248). This could be editorial bias, a growing gap be-
tween electronic preprint and publication appearance (after

all, many of the recent nonpreprint cited works also origi-
nally appeared on OO or the arXiv), and other factors. Even
within mathematics, the growth of optimization and control
submissions is steady; see Fig. B.

Fig. B: Fraction of mathematics submissions to arXiv by
subarea; Optimization and Control subarea highlighted.

We note that the article in this issue is available at https:
//arxiv.org/abs/1712.06038. What are your thoughts on
the growth, effects, and drivers of electronic preprints?

Digital/Printed Newsletters. Many of you have written
to opt for an electronic copy of Views and News; if you are
receiving physical copies and prefer otherwise, please do not
hesitate to contact us.

Upcoming Meetings. We are excited to see many of
you in a couple of months in Bordeaux at the 2018 Inter-
national Symposium on Mathematical Programming (ISMP
2018). Before we close out another decade (time really does
fly when you’re having fun!), the recently announced SIAM
CSE19 meeting in Spokane, Washington includes a number
of themes of direct interest to our activity group.

As always, we welcome your feedback, emailed directly to
us or to siagoptnews@lists.mcs.anl.gov. Suggestions for
new issues, comments, and papers are always welcome!

Congratulations to the activity group’s chair and all of the
new SIAM fellows!

Stefan M. Wild, Editor
Mathematics & Computer Science Div., Argonne National
Lab, USA, wild@anl.gov, http://www.mcs.anl.gov/~wild
Jennifer Erway, Editor
Department of Mathematics, Wake Forest University, USA,
erwayjb@wfu.edu, http://www.wfu.edu/~erwayjb
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