## Computational Challenges for Subsurface Flow Modeling and Optimization



## Computational Issues for Oil / Gas Production and CO<sub>2</sub> Sequestration

- Multiscale geology
- Unconventional resources and complex recovery processes increasingly important
  - Tar sands, oil shales, shale gas, coalbed methane
  - Recovery / CO<sub>2</sub> storage: multiphysics & multiscale
- Use of computational optimization and data assimilation procedures; multiple objective optimization
- Uncertainty assessment, risk management

## **Darcy Flow through Porous Formations**

• Darcy velocity u, volumetric flow rate q (u = q/A)

$$p = p_1 \qquad \qquad p = p_2$$

rock permeability k, fluid viscosity  $\mu$ , porosity  $\phi$ 

$$u = -\frac{k}{\mu} \frac{dp}{dx}, \quad \phi = \frac{V_{\text{pore}}}{V_{\text{bulk}}}$$

• In multiple dimensions,  $\mathbf{u} = -\frac{1}{\mu} \mathbf{k} \nabla p$ 

# Governing Equations for Subsurface Flow (Multicomponent, Multiphase, Darcy Scale)

Component mass balances for component i:

$$\frac{\partial}{\partial t} \left( \sum_{j} \phi \rho_{j} y_{ij} S_{j} \right) + \nabla \cdot \left( \sum_{j} \rho_{j} y_{ij} \mathbf{u}_{j} \right) = m_{c} \quad \mathbf{n_{c}} \text{ equations}$$

- Darcy's laws for **phase** j:  $\mathbf{u}_{j} = -\frac{k_{rj}(S)}{\mu_{j}} \mathbf{k} \nabla p_{j}$
- Equilibrium relationships:  $K = y_{i,vapor} / y_{i,oleic}$
- Additional (problem specific) effects: energy equation, geomechanics, chemical reactions, ...



#### **Fault Zone Features**



## Thin Section of Slip Bands

 Low φ and k in slip bands; presence of open fractures may have strong impact on flow



## **Upscaling Approaches**

 Upscaling (computational homogenization) methods provide averaged or coarse-grained results



coarse functions ( $\mathbf{k}^*$ ,  $\phi^*$ ,  $\lambda^*$ ,  $f^*$ ) generally precomputed

#### Multiscale Finite Element / Volume Methods

- Construct (local) basis functions to capture subgrid k(x)
- Reconstruct fine-scale u for transport calculations
- FE (Hou, Wu, Efendiev, ...), FV (Jenny, Lee, Tchelepi, Lunati, ...),
  MFE (Arbogast, Aarnes, Krogstad, Lie, Juanes, Chen ...)





primal & dual grids

## **Reduced-Order Modeling Procedures**

- ROM approaches require "training" run using fullorder model [g(x)=0] and basis construction
- "Snapshot" matrix  $X = [x_1, x_2, ... x_N]$ ; SVD of X provides basis matrix  $\Phi$  ( $x = \Phi z$ )
- Basic POD:  $\mathbf{J}\boldsymbol{\delta} = -\mathbf{g} \rightarrow (\mathbf{\Phi}^T \mathbf{J}\mathbf{\Phi})\boldsymbol{\delta}_r = -\mathbf{\Phi}^T \mathbf{g}$
- Trajectory piecewise linearization (TPWL):

$$\mathbf{z}^{n+1} = \mathbf{z}^{i+1} - \left(\mathbf{J}_r^{i+1}\right)^{-1} \left[ \left(\frac{\partial \mathbf{g}^{i+1}}{\partial \mathbf{x}^i}\right)_r (\mathbf{z}^n - \mathbf{z}^i) + \left(\frac{\partial \mathbf{g}^{i+1}}{\partial \mathbf{u}^{i+1}}\right)_r (\mathbf{u}^{n+1} - \mathbf{u}^{i+1}) \right]$$

$$\mathbf{J}_r^{i+1} = \mathbf{\Phi}^T \mathbf{J}^{i+1} \mathbf{\Phi}$$

#### Oil from Unconventional Sources



tar sands



oil shales

- Alberta tar sands: ~170 × 10<sup>9</sup> bbl in reserves
- US oil shales: ~2 × 10<sup>12</sup> bbl *resource* (Green River Formation, UT, CO, WY)

#### **In-situ Upgrading of Oil Shale**



kerogen(s) → oil + gas

(via several reactions)

## **In-situ Upgrading Simulations**



## Geological Sequestration of CO<sub>2</sub>



## **Geologic Storage of Carbon**



Time since injection stops (years)

#### **Trapping Mechanisms**

- Structural
- Residual
- Solubility
- Mineral

## **Optimization of Well Placement and Settings**

- Determine well locations, orientation and injection schedule to minimize mobile CO<sub>2</sub>
- Applying global stochastic search (PSO) and local search (GPS, HJ) optimizers



## **Optimization Results**

#### **Optimal Injection Strategy (4 periods)**



Mobile CO<sub>2</sub> (top view, vertically averaged, low hysteresis)





**Optimized** 

## **Optimization of Field Development**

 Goal is, e.g., to maximize net present value of multi-well development project

#### Complications:

- Number of wells must be determined in optimization
- Each well can be of any type (categorical)
- Reservoir geology is uncertain
- Well settings also need to be optimized
- Multiple objectives may be important
- Each function evaluation entails reservoir simulation

#### Some Possible Well Types ...



## ... Coupled with Multiple Geomodels



$$\langle \text{NPV} \rangle = \frac{1}{N_r} \sum_{i=1}^{N_r} (\text{NPV})_i$$
  $N_r = \text{\# of realizations}$  (potentially 100s or 1000s)

## Retrospective Optimization\* for Well Placement under Geological Uncertainty

Brute force approach: at each iteration evaluate

$$\langle J \rangle = \frac{1}{N_r} \sum_{i=1}^{N_r} J_i$$

- RO approach:
  - Define sequence of sub-problems  $P_k$  with increasing  $N_k$
  - E.g., for  $N_r$ =80, use 4 sub-problems with  $N_k$  = (4, 8, 24, 80)
  - Optimize  $\langle J \rangle_k$  using any core optimization algorithm
  - Initial guess for  $P_{k+1}$  is solution to  $P_k$
  - Early sub-problems faster to evaluate; later sub-problems converge quickly because initial guess is close to optimum

#### Case 1: Well Placement in Brugge Field\*

- $139 \times 48 \times 9$  blocks (total of 60,048)
- 5 fixed injection wells (BHP = 180 bar)
- Optimize 5 production wells  $(I, J, K_1, K_2)$  (BHP = 50 bar)
- 30 years of production
- Maximize NPV over 104 realizations
- Simulate using Eclipse
- Optimize using PSO

<sup>\*</sup>Peters et. al. SPE 119094

#### Six Realizations of Brugge Permeability



#### Performance of Brute-Force PSO (no RO)



100 PSO iterations × 20 PSO particles × 104 realizations
 ≈ 200,000 reservoir simulations

## Random and Cluster Sampling RO-PSO $(N_k = 1, 5, 16, 21, 104, Average of 3 Runs)$



PSO Full: 7.46B\$

RO-PSO Random: 7.42B\$

RO-PSO Cluster: 7.61B\$

5 RO iterations used  $\sim 12,000$  simulations

## **Summary**

- Computational challenges:
  - Multiscale geology and effects on flow, particularly for complex (multiphysics) processes
  - Increasing importance of unconventional resources
  - Optimization of production or CO<sub>2</sub> sequestration
- Computational advances could lead to better predictive models, improved recovery, realistic UQ, and could facilitate production of unconventional resources