Computational Challenges for
Subsurface Flow Modeling and
Optimization




Computational Issues for Oil / Gas
Production and CO, Sequestration

Multiscale geology

Unconventional resources and complex recovery
processes increasingly important

— Tar sands, oil shales, shale gas, coalbed methane

— Recovery / CO, storage: multiphysics & multiscale

Use of computational optimization and data assimilation
procedures; multiple objective optimization

Uncertainty assessment, risk management



Darcy Flow through Porous Formations

« Darcy velocity u, volumetric flow rate g (u=q/A)

rock permeability k, fluid viscosity 1, porosity ¢
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Governing Equations for Subsurface Flow
(Multicomponent, Multiphase, Darcy Scale)

* Component mass balances for component I
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* Darcy’s laws for phase J:  u, =— kVp,
Hi

 Equilibrium relationships: K = yi,vapor/ Yi oleic

* Additional (problem specific) effects: energy equation,
geomechanics, chemical reactions, ...
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Multiscale Geology & Reservoir Flow

* Reservoir: 5km x5km x 100 m
e Grid blocks: 5mx5m x0.2m
*« 1000 x 1000 x 500 = 0.5 x 10° blocks
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Fault Zone Features

Deformed host rock

Fault rock

Orthogonal SBs

Slip band sets

(from Ahmadov et al., 2007)



Thin Section of Slip Bands

* Low ¢ and k in slip bands; presence of open fractures
may have strong impact on flow

fracture

(from Ahmadov et al., 2007)



Upscaling Approaches

* Upscaling (computational homogenization) methods
provide averaged or coarse-grained results

Fine grid Coarse grid
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Multiscale Finite Element / Volume Methods

» Construct (local) basis functions to capture subgrid k(x)
» Reconstruct fine-scale u for transport calculations

 FE (Hou, Wu, Efendiev, ...), FV (Jenny, Lee, Tchelepi, Lunati, ...),
MFE (Arbogast, Aarnes, Krogstad, Lie, Juanes, Chen ...)
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Reduced-Order Modeling Procedures

* ROM approaches require “training” run using full-
order model [g(x)=0] and basis construction

* “Snapshot” matrix X=[x, X5, ... X\]; SVD of X
provides basis matrix ® (x=®z)

*Basic POD: Jo=-g — (@' JD) =-D'¢g

* Trajectory piecewise linearization (TPWL):
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Oil from Unconventional Sources

tar sands

* Alberta tar sands: ~170 x 10° bbl in reserves

* US oil shales: ~2 x 10"? bbl resource (Green River
Formation, UT, CO, WY)
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pictures from http://www.technologyreview.com/NanoTech/wtr_16059,318,p1.html (left), S. Graham (right)



In-situ Upgrading of Oil Shale

Qil shale

(Picture from www.shell.com)

kerogen(s) — oil + gas

(via several reactions)
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In-situ Upgrading Simulations

t = 0day t = 60 days t = 240 days t = 500 days

800
700
‘ _ sl ‘ 600

I l 500
AN

—
!

400

Temperature

Kerogen
concentration

Fan, Durlofsky & Tchelepi (2009)

300
200
100

1.4
1.2
1

0.8
0.6
0.4
0.2
0




Geological Sequestration of CO,

(from Benson, 2007)



Geologic Storage of Carbon
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Optimization of Well Placement and Settings

* Determine well locations, orientation and injection
schedule to minimize mobile CO,

* Applying global stochastic search (PSQO) and local
search (GPS, HJ) optimizers
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(work with David Cameron)



Optimization Results

Optimal Injection Strategy (4 periods)

Well 1 Well 2 Well 3 Well 4

sl [ D

Mobile CO,

(top view, vertically averaged, low hysteresis)

Default Optimized 17



Optimization of Field Development

« Goal is, e.g., to maximize net present value of
multi-well development project

« Complications:
— Number of wells must be determined in optimization
— Each well can be of any type (categorical)
— Reservoir geology is uncertain
— Well settings also need to be optimized
— Multiple objectives may be important

— Each function evaluation entails reservoir simulation
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Some Possible Well Types ...
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Stacked Dual and Tri-Lateral

Dual-Opposed Lateral and Stacked Opposed
Quadrilateral

Planar Dual-lateral or planar Y-well

a7

Planar Tri-Latcral

Planar Offset Quadrilateral

Planar Opposed Quadrilateral or “Herring-Bone
Pattern

Stacked’ Inclined Tri-Lateral

Radial Quadrilateral

Radial Tri-lateral Extending from a primary

vertical wellhare

hJW AN

Stacked Radial Quadrilateral

(from TAML, 1999)
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... Coupled with Multiple Geomodels

(NPV) =

Nr

N, = # of realizations
Zl‘d(NPV)I (potentially 100s or 1000s)
=

S
Nr
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Retrospective Optimization* for

Well Placement under Geological Uncertainty

« Brute force approach: at each iteration evaluate

)= 23

1=1

RO approach:

Define sequence of sub-problems P, with increasing N,
E.g., for N, =80, use 4 sub-problems with N, = (4, 8, 24, 80)
Optimize (J ), using any core optimization algorithm

Initial guess for P, ., is solution to P,

Early sub-problems faster to evaluate; later sub-problems
converge quickly because initial guess is close to optimum

*Chen & Schmeiser, 2001; Wang & Schmeiser, 2008
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Case 1: Well Placement in Brugge Field*

139 x 48 x 9 blocks (total of 60,048)

5 fixed injection wells (BHP = 180 bar)

Optimize 5 production wells (/, J, K1, K3) (BHP = 50 bar)
30 years of production

Maximize NPV over 104 realizations

Simulate using Eclipse

Optimize using PSO

*Peters et. al. SPE 119094
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Six Realizations of Brugge Permeability
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Performance of Brute-Force PSO (no RO)
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Number of Simulation Calls

* 100 PSO iterations x 20 PSO particles x 104 realizations

~ 200,000 reservoir simulations
Wang et al. (2011)



Random and Cluster Sampling RO-PSO
(N, =1,5,16,21,104, Average of 3 Runs)
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5 RO iterations used ~ 12,000 simulations
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Wang et al. (2011)



Summary

« Computational challenges:
— Multiscale geology and effects on flow, particularly for
complex (multiphysics) processes
— Increasing importance of unconventional resources

— Optimization of production or CO, sequestration

« Computational advances could lead to better predictive
models, improved recovery, realistic UQ, and could
facilitate production of unconventional resources
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