

Alistair Adcroft (Princeton Univ.)

HIGH ORDER REMAPPING, THE SPURIOUS MIXING PROBLEM, AND HEAT UPTAKE IN OCEAN MODELS

White & Adcroft, JCP 2008 White et al., JCP 2009 Ilicak et al., OM 2011

NORA

On ocean climate modeling

- The global ocean ...
 - ... is stratified
 - ... is rotating
 - ... has very complex boundaries
 - ... has wide scale separations
- ... makes modeling very challenging
- Climate problem is <u>not</u> an initial value problem
- Compared to CFD codes OGCMs can "appear antiquated"
 - Different computational demands
 - Turnaround trumps accuracy

- Length scales
 - Planetary/basin ~ 10⁷ m
 - Mesoscale ~ 10³-10⁵ m
 - Depth ~ 10°-10⁴ m
 - Ozmidov ~ 10°-10² m
 - Boundary layer ~ 10⁻²-10¹ m
 - Kolmogorov ~ 10⁻³ m
- Time scales
 - Carbon ~ 10¹¹-10¹² s
 - Thermal (MOC) ~ 10¹⁰ s
 - Eddy turn-over ~ 10⁵ s
 - Rotation ~ 10⁴ s
 - Forced convection ~ 10³ s
- 1° model: 4×10^5 nodes, $\Delta_{t} \sim 3.10^3$ s
- $\frac{1}{4}$ ° model: 10^8 nodes, Δ_{t} ~ 10^3 s
- 1 km dream: 10^{10} nodes, Δ_{t} ~ 40 s

Recent advances/opportunities

- Horizontal grids
 - Stretching, nesting, macro-unstructured, unstructered grids
- Numerical methods
 - Time-stepping, solvers
- Transport schemes
 - High order, compact, limiters
- Formulation
 - Equations, symmetries, coordinates
- Data assimilation
- Parameterizations
 - S.G.S. turbulent <u>fluxes</u>
 - Momentum
 - Heat/salt/BGC scalars

Example of spurious mixing

 Numerical truncations exhibited as diffusion (and dispersion) spuriously lead to new water masses

"True" solution: Isopycnal models preserve water masses in the adiabatic limit

"New" density classes appear due to motion normal to the isopycnal

Spurious mixing

- Spurious *diapycnal* mixing Griffies et al, 2000
 - One argument in "coordinate debate"
 - Isopycnal models can preserve water masses
 - Believed to be more prevalent at higher resolution (eddy permitting)
 - Model inter-comparisons often "compare apples and oranges" DYNAMO; Legg et al., 2006 (GCE-CPT)
 - Coordinate issue best evaluated in <u>one</u> model
 - New general coordinate model "GOLD"
 - New high order methods: PQM
- Diagnose spurious mixing
 - In idealized experiments
 - In "realistic" global models
- Consequences for ocean-climate models
 - Heat uptake controlled by mixing

Coordinate free algorithm

Re-gridding

- Re-mapping
- Re-construct global profile
 - Single valued (monotonic)
 - (continuous or not)
 - (conservative or not)
- Find position of new grid

- Re-construct local profiles
 - Conservative
 - Limited (monotonic) or not
 - Discontinuous (exclusive!) or not
- Integrate for new cell averages

Accuracy of reconstructions is key to success of remapping algorithms

Piecewise * Method (* = C,L,P or Q)

- PLM: two degrees of freedom
 - Cell mean + slope
- PPM: three degrees of freedom
 - Very widely used
 - Cell mean + two edge values
- PQM: five degrees of freedom
 - Cell mean + two edge values + two edge slopes

Successive schemes provide more flexibility to represent structures → more accurate

PQM results

- 1D advection test
- 5th order accuracy (or better)
 - when unlimited

- PQM substantially more accurate than PPM in practice
 - i.e. when limited(as expected)

Assessing coordinates in one model

- Spurious diffusion significantly dilutes gravity current
- Re-mapping to isopycnals does as well as layered isopycnal
- Re-mapping to non-isopycnal coordinates clearly diffusive

Quantifying spurious mixing

Potential energy

$$PE = g \iiint \rho z \, dV$$

Available potential energy (APE)

$$APE = PE - UPE$$

$$UPE = g \iiint \rho^* z \, dV$$

- p* is the adiabatically rearranged state with minimal potential energy
- UPE can only be changed by diapycnal mixing
 - Mixing raises center of mass

What controls spurious mixing

- Accuracy of transport scheme most significant at low orders
 - Large difference between
 1st and 2nd order
 - Small difference between 3rd and 7th order
- 2. Noise in flow field
 - Controlled by grid Reynolds number

$$\operatorname{Re}_{\Delta} = \frac{U\Delta x}{v_h}$$

Usual practice is to use largest Re, that is stable!

Note: this concerns 3D transport in non-isopycnal coordinates
Isopycnal coordinates have negligible spurious mixing

Spurious work in global models I

- Spin down experiments
- Realistic configurations
 - Geometry
 - Spun-up hydrography
 - Momentum closure
- Measure real energy change
 - Due only to spurious or explicit mixing

Spurious work in global models II

- Intended work by parameterized diapycnal processes in CM2G (1°) does <u>916 GW</u>
 - 809 GW adjusted for cabbelling
 - Corresponds to ~3 TW wind/tide input (whole ocean)

K (m²/s)	ρ-coord 1° (GW)		z-coord 1° (GW)		z-coord ¼° (GW)	
0	107	0	336	0	1015	0
10 ⁻⁷	124	17	344	8		
10 ⁻⁶	192	85	411	75	1089	74
10 ⁻⁵	656	549	1012	676	1701	686
10 ⁻⁴	3819	3712	-	-	-	-

Would like these to be small compared to 809 GW

Heat uptake in ocean models

- Abyssal mixing matters for long term climate
 - Affects long term heat uptake
 - ... and for carbon (closed system)

Due to increasing parameterized mixing (~30% more work)

Final thoughts

- Improvements in numerical methods are paying off
 - Enables new class of models to address questions that couldn't be answered before
- Applying modern methods is hard
 - Different constraints from other CFD problems
 - Different computational demands
 - Direction of computer evolution is not helping

