

GEOSCIENCES AND COMPUTING IN THE INDUSTRY

NSF forward looking CMG workshop

Amik St-Cyr

Sr. Researcher Computation & Modeling

Emerging Technologies, Shell International Exploration & Production Inc.

Copyright of RDS September 2011

OVERVIEW

- ■Overview of Computing
- □Research challenges
- ■Collaborations
- ■Conclusions

Copyright of RDS September 2011

2

OVERVIEW OF COMPUTING (UPSTREAM)

@ Shell

- Close to close to 1PFlops in production
 - Mid size clusters & very large ones
 - Blade "virtual computing": cloud
 - IT: 100k users
- Seismic processing (largest user)
 - Mostly Embarrassingly parallel (for now) roughly 50k cores 24/7
 - Hitting resolution limits
 - Full Waveform Inversion is more demanding
- Reservoir modeling
 - Very challenging mathematically & computationally
 - Though linear systems, multi-physics, optimization (unconventional)
- Data mining
 - Sensor networks, monitoring, fiber-optics ... flood of data (Multi-exabytes)

SEISMIC SIMULATION TECHNOLOGY....

Exploration in the arctic circle, Siberia ...

Need to process faster ... Billons at stake

- No more clock rate increases
- Future seems multicore: accelerators, processors
 - NVIDIA & AMD GPUs, Intel's MIC, hybrids
 - No coding standards yet ... (like MPI)

Industry never "adopted" supercomputing: why?

- Because of clock: most cost effective solution (wait and code is faster)
- Knowledge base:
 - Proficiency in multiple languages
 - Numerical methods & libraries of "industrial strength"

RESERVOIR SIMULATION TECHNOLOGY...

Easy oil and gas is diminishing fast Increasingly important role for

- EOR/IOR
- Unconventional Hydrocarbon reservoirsHigh-tech, small(er) error margins force to:
- Improve process understanding
- Improve de-risking strategies
- Improve optimization of development options

... Simulation technology & "savoir faire" is key enabler

UNCONVENTIONAL OIL NEEDS

Hydrocarbon Recovery Technologies: EOR/IOR, for "conventional" oils

■ Foam, Polymers, Solvents, ...

Unconventional Technologies: Thermal EOR, Ultra heavy oil

- Steam /solvents
 - Steam, GOGD, solver robustness, complex geology/grids
 - Uncertainty quantification
- IUP, hybrids
 - Pattern and process optimization (full, partial, hybrid)
 - Efficiency of multi-component simulations & reactive flow
- ICP
 - Permeability/porosity generation, popcorn effect, leaching, ...
 - Geomechanics effects, coupling of flow and rock mechanics
 - Pattern and process optimization

UNCONVENTIONAL OIL NEEDS

- Formation Joule heating
 - Electrical fields in saturated rock
- Heater development
 - Coking, near-wellbore effects, impact of water/steam
 - Leaking salt (molten salt heater), chemistry, flow, ...
- CO2 managing and sequestration
 - Detailed understanding of various subsurface CO2 generation mechanisms
 - Storage in aquifers: Geochemistry, aqueous physics/kinetics

UNCONVENTIONAL GAS NEEDS

Tight gas, ECBM

- Hydraulic fractures, fissured rock
 - Geomechanics, fracture growth, opening/closing of fissures, ...
- Flow in tight, fissured rock
 - Fundamentals of fluid/gas flow physics in "quadruple porosity" rock
 - Multi-component Knudsen flow
 - Aqueous chemistry, gas solubility
- Rock-fluid interaction, ad/de-sorption
 - Langmuir and beyond, temperature effects in ECBM-style processes
 - Non-equilibrium effects on capillary pressure and relperm

Tight light oil

- All of the above
- Phase behavior in small-pores, effect of capillary pressure

RESEARCH OPPORTUNITIES

- Solving hyperbolic PDEs (e.g. wave equation) → FAST + robust
- Flows through porous media & UQ → robustness + speed, scalability (?)
- Multi-physics/scales:
 - Numerical treatment: time & space, unstructured?
 - Efficiency ? (We need a solution fast: used in optimizer)
- CO2 sequestration
- Climate:
 - paleo-climate (geology),
 - climate & weather (trading, acquisitions, planning)
- Data mining:
 - Compression: new methods, sparsity enabling (CS)
 - Acquisition: compression at the source
 - Interpretation of data
 - Visualization, discover "more" information (the nuggets in the data)

RESEARCH OPPORTUNITIES

To resume:

- Numerical methods
- Parallel computing, languages
- Uncertainty quantification & Optimization
- Data mining, access to unavailable data
- How to proceed?

Copyright of RDS

COLLABORATIONS

- Research budget @ Shell ~ \$1.2B
- Funding! (e.g. Shell's GameChanger program)
- Examples (amongst many others)
 - MIT:
 - Multi-year effort: \$5M/year: large pilot project
 - Very open: publication, data sharing, shares researchers, patents etc.
 - Compressed sensing, FWI, DG ...
 - Rice University, Shell, NVIDIA, Contractors:
 - 1 (up to 2) year(s) effort: \$M
 - Proof of concept: open, data sharing, publications, patents etc.
 - Improves existing method and starts investigating "newer" ones
- Shell sponsors students, internships, sabbaticals, teaching releases, summer salaries...

GAINS?

- Access to data otherwise unavailable
- Access to researchers with interesting applications/problems/ background
- Make a possible <u>four-fold impact</u> through:
 - Publication, Patents, Use (we do need the results!) and spinoffs...
- Industry funding for students, internships, sabbaticals, teaching releases, summer salaries...
- Access to world class computing facilities
 - Solve the chicken/egg problem for industry?
- Access/training on world class scalable software & tools (e.g. DOE)
- Access to world renowned academics and top students
 - Internship program leads to employment within company in most case
- Industry eager to team up with government research agencies & sponsor world class research

Copyright of RDS

GAINS?

- Training of staff
 - Staff keeps to date, at bleeding edge
- Apply solutions/research to challenging "real world" problems
 - Academics generates idea/concept/theory
 - Shell provides problems
 - Shell staff & contractors implement real-world case (no burden on academia)
 - Immediate impact!
- Students
 - Get to interact in industrial research environment
 - More appealing to job market
- Sharing cost for state-of-the-art HPC facilities...

Copyright of RDS

SUMMARY

- Because of current/future hardware the industry
 - Needs to adapt to the multi-core revolution
 - Has a need for scalable numerical methods
 - Needs fast + robust + multi-scale + multi-physics
 - Needs to develop scalable industrial strength solvers.
- This is for a wide variety of subsurface problems & even climate/weather!
- Industry (Shell) is looking toward a new more open research interaction with academia and industry
- Joint funding opportunities (even facilities)
 - Will give competitive edge to academia: matching funding
 - Will help train the next generation of industrial researcher
- Crosscutting fields & institutions/industries

Copyright of RDS September 2011 14

